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Talk Summary

What is a monotonicity?
Representative Functions and Monotone sets
Convex Functions and Monotonicity
Why Maximality
Maximality of Sums in Reflexive Spaces
Monotonic Closure of Representable Monotone Set
Generic Sum theorem Machinery
Sum Theorem for FVP operators
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What is Monotonicity?

A convex pointed cone (i.e. x ∈ C then −x /∈ C) provides an order via
x ≥C y iff x − y ∈ C.

The polar cone is defined via the ”duality pairing” of to Banach
spaces X and its dual X∗ (isometric to all continuous linear forms on
X). In functional analysis this replaces the ”inner product” used in
finite dimensions.
For x∗ ∈ X∗ we have x 7→ ⟨x, x∗⟩ a continuous linear functional on X
and for each x ∈ X we have x∗ 7→ ⟨x, x∗⟩ a (weak∗) continuous linear
functional on X∗ i.e.

⟨α1x1 + α2x2, x∗⟩ = α1⟨x1, x∗⟩+ α2⟨x2, x∗⟩
and ⟨α1x∗1 + α2x∗2, x⟩ = α1⟨x∗1, x⟩+ α2⟨x∗2, x⟩.

A Banach space X is reflexive if X∗∗ = X i.e. the set of continuous
linear forms on X∗ is congruent to X.
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What is a Monotone Operator?
The polar cone is given by

Figure:

C◦ = {x∗ ∈ X∗ | ⟨x, x∗⟩ ≤ 0, for all x ∈ C} .
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What is a Monotone Operator?
Note Rn

+ = − (Rn
+)

◦ in finite dimensions.

If from v ≤C w it follows that Tv ≤−C◦ Tw we have v − w ∈ C
implies Tw − Tv ∈ −C◦ or

⟨Tw − Tv,w − v⟩ ≥ 0.

Similarly if w ≤C v it follows that Tw ≤−C◦ Tv we have v − w ∈ C
implies Tv − Tw ∈ −C◦ or

⟨Tv − Tw, v − w⟩ ≥ 0, again.

Definition
An operator T : X → X∗ (possibly multi-valued) is called monotone iff for
all x∗ ∈ Tx and y∗ ∈ Ty we have

⟨x − y, x∗ − y∗⟩ ≥ 0.
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Convex Functions
The stock example of a ”nice” monotone operator that can be
multi-valued is the subgradient of a proper, extended real valued,
closed convex function i.e. epi(f) := {(x, α) | α ≥ f (x)} is closed,
f > −∞ but can take values +∞ outside
dom f := {x ∈ X | f (x) < +∞} .

Definition
Let f : X → R+∞ be convex. The vector x∗ ∈ X∗ is a subgradient of f at x̄
if it satisfies the following inequality for all x ∈ X

f(x)− f(x̄) ≥ ⟨x∗, x − x̄⟩ (the subgradient inequality).

Denote by ∂f(x̄) the set of all subgradients of f at x̄.

Clearly ∂f (x̄) is a convex set.
When the usual Frechet or Gateaux derivative ∇f(x̄) exists it is the
unique subgradient.
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Convex Functions is Monotone (and maximal)

Write down the subgradient inequality twice (at x and at y)

f(x)− f(y) ≥ ⟨y∗, x − y⟩ and f(y)− f(x) ≥ ⟨x∗, y − x⟩

adding implies
⟨x∗ − y∗, x − y⟩ ≥ 0.

One can do this with a cycle of point x0, x1, . . . , xn, xn+1 = x0 to get
n
∑
i=0

⟨x∗i , xi+1 − xi⟩ ≥ 0.

Indeed ∂f needs to be ”Maximal” if X is just a Banach space. That is,
we can’t extend it any further as a monotone operator.
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Convex Functions are ”mostly” single valued
There began an industry in the 1970-1980 (i.e. Kenderov, Phelps)
around the linking of ”Banach Geometric” properties, such as
”rotundity of the dual norm” and properties of the duality mapping

J(x) := ∂
1
2 ∥x∥2

to the differentiability of convex functions on the Banach space in
question.

Differentianility corresponds to the single valuedness of the monotone
operator T := ∂f.
An Asplund space (which includes all reflexive spaces) is defined to be
those Banach spaces on which, equivalently:

I Every continuous convex function f on X is generically differentiable
(generic means on a Gδ dense subset)

I Every (maximal) monotone operator is single-values on a generic
subset of its domain.
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Why Maximality

A lot of work in infinite dimension revolves around finite
approximation and an easy consequence of maximality is the
demi-closed property:

x∗n ∈ T (xn) , x∗n →w x∗, xn →s x =⇒ x∗ ∈ T (x) .

This is just what is needed for approximation methods. This also arise
in optimization algorithm.
Sums of maximal monotone operators arise frequently and we would
like to know if they are maximal?
Outside of reflexive spaces question regarding maximality and
closeness are much more difficult due to total failure of any kind of
joint continuity of the duality mapping (x, x∗) 7→ ⟨x, x∗⟩ with respect
to any topology compatible with s × w∗ convergence (and duality).
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Outside of reflexive spaces question regarding maximality and
closeness are much more difficult due to total failure of any kind of
joint continuity of the duality mapping (x, x∗) 7→ ⟨x, x∗⟩ with respect
to any topology compatible with s × w∗ convergence (and duality).
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Maximality of Sums
As we have seen many applications require maximality of a sum of
monotone operators. This issue was resolved in Reflexive spaces by Terry
Rockafellar, ”On the maximality of a Sum of Nonlinear Monotone
Operators”, Trans. Am. Math. Soc., 159, 81-99, 1970.

Theorem (Rockafellar’s Sum Theorem)
Suppose that S and T are maximal monotone operators on a reflexive
Banach space. Suppose that

int dom (S) ∩ dom (T) ̸= ∅.

Then S + T is maximal monotone.

Maximality is the hard part to prove, monotonicity is trivial: Suppose
x∗ ∈ T (x) and y∗ ∈ S (x) then x∗ + y∗ ∈ S (x) + T (x) = (S + T) (x) and
for u∗ ∈ T (u) and v∗ ∈ S (u), using monotonicity of S and T,

⟨x∗ + y∗ − (u∗ + v∗) , x − u⟩ = ⟨x∗ − u∗, x − u⟩+ ⟨y∗ − v∗, x − u⟩ ≥ 0.
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Consequences of a Sum Theorem

There are many consequences of a sum theorem when it holds, the
domain domT is ”nearly convex” i.e. domT is convex.

Martínez-Legaz and Svaiter introduced the monotone polar of
monotone set T ⊆ X × X∗ which is denoted by

Tµ := {(x, x∗) ∈ X × X∗ | ⟨x − y, x∗ − y∗⟩ ≥ 0, ∀ (y, y∗) ∈ T} .

T is of type (FPV): ∀V ⊆ X with domT ∩ V ̸= ∅ the following holds:
if x ∈ V and (x, x∗) ∈ (T|V)µ implies x∗ ∈ T (x).

Corollary (Convex Closure, Simons)

Assume the sum theorem. Suppose T is maximal monotone then T is of
type (FPV). In particular, dom(T) has a convex closure.
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Representative Functions

Couple X × X∗ with X∗ × X using ⟨(z, z∗), (x∗, x)⟩ = ⟨z, x∗⟩+ ⟨x, z∗⟩ and
∥(z, z∗)∥2 = ∥z∥2 + ∥z∗∥2 .

Definition
We call a proper convex function f is representative when
f (y, y∗) ≥ ⟨y, y∗⟩ for all (y, y∗) ∈ X × X∗ and it represents
Mf := {(x, x∗) ∈ X × X∗ | f (x, x∗) = ⟨x, x∗⟩} .

Theorem (Fitzpatrick/Penot?)
If f is representative then Mf is a monotone set.

Proof: Let (x, x∗) , (y, y∗) ∈ Mf then ⟨x − y, x∗ − y⟩ ≥ 0 follows from
1
2 ⟨x, x∗⟩+

1
2 ⟨y, y∗⟩ =

1
2 f (x, x∗) + 1

2 f (y, y∗) ≥ f
( 1

2 (x, x∗) +
1
2 (y, y∗)

)
≥ ⟨ 1

2 (x + y) , 1
2 (x∗ + y∗)⟩ = 1

4 ⟨x, x∗⟩+
1
4 ⟨x, y∗⟩+

1
4 ⟨y, x∗⟩+

1
4 ⟨y, y∗⟩.
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The Fitzpatrick Function
Define the ‘transpose’ operator †: (x∗, x) ↔ (x, x∗) and
cT (·, ·) := δT (·, ·) + ⟨·, ·⟩, (δT the indicator of the graph of T).
Fitzpatrick showed that

PT = F ∗†
T and FT = c∗†

T defined on (X,X∗)

are representative when T is maximal. Indeed, PT is the largest under
the pointwise order and FT the smallest. As a consequence proofs
were reduced from dozens of pages to half pages.

Figure: Simon Fitzpatrick and Regina Burachik
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The Reflexive Case

In a reflexive space there is a beautiful characterisation of maximal
monotonicity in terms of representative functions:

Denote M≤
h := {(x, x∗) ∈ X × X∗ | h(x, x∗) ≤ ⟨x, x∗⟩} then Tµ = M≤

FT
.

Theorem (Burachik and Svaiter)
Suppose X is a reflexive Banach space and h : X × X∗ → R+∞ be a
convex lower semi-continuous function. Suppose that

∀(x, x∗) ∈ X × X∗ h(x, x∗) ≥ ⟨x, x∗⟩, h∗†(x, x∗) ≥ ⟨x, x∗⟩.

Then T := M≤
h is maximal monotone and h ∈ R(T).
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The Non-reflexive Case
So as to respect the basic duality relationships for conjugation on
X × X∗ paired with X∗ × X, with the later endowed with the w∗ × s
topology.

Denote

f ∗† (x, x∗) := f ∗ (x∗, x) = sup
(z,z∗)∈X×X∗

{⟨(x, x∗) , (z, z∗)⟩ − f (z, z∗)}

is the transpose conjugate of f.
We say T is representable when there exists
f ∈ R(T) := {f ∈ [FT,PT] | f ≥ ⟨·, ·⟩} with T = Mf := M≤

f when f is
representative.
It is well known that when f ∈ R (T) then
f ∈ [FT,PT] = {g ∈ PC (X,X∗) | FT ≤ g ≤ PT}, where the partial
order is pointwise.
Recall bR (T) :=

{
f ∈ [FT,PT] | f ∗† ≥ f ≥ ⟨·, ·⟩

}
are the

bigger–conjugate representative functions with T ⊆ Mf ⊆ Tµ.
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Monotonic Closure
One always has Tµµµ = Tµ and if T is monotone then T ⊆ Tµ and
T 7→ Tµ is a polarity and as a consequence A ⊆ B implies Aµ ⊇ Bµ,
T ⊆ Tµµ and (A ∪ B)µ = Aµ ∩ Bµ (for any sets A,B ⊆ X × X∗).

We shall call Tµµ the monotonic closure of T.

Proposition (Martinez-Lagaz – Svaiter)

The following are equivalent to T : X ⇒ X∗ being monotone:
1 T ⊆ Tµ,
2 Tµµ ⊆ Tµ,
3 Tµµ is monotone (with T ⊆ Tµµ).

We have T maximal monotone iff T = Tµ (or T monotone and T ⊇ Tµ).
Moreover denoting
M(T) := {B ⊆ X × X∗ | B is maximal monotone ,T ⊆ B} then when T is
monotone we have:
Tµ =

∪
B∈M(T) B and Tµµ =

∩
B∈M(T) B.
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In a reflexive space all f ∈ bR(T) represent a maximal monotone
operators where T := Mf = Mf ∗†

The main idea studied here is that under the assumption that Mh for
h ∈ bR (T) is not maximal, then there exists points
(x, x∗) ∈ (Mh)

µ ∩ (Mh)
c (and so {(x, x∗)}µ ⊇ Mh).

Indeed if this was not the case, then we would necessarily have
(Mh)

µ ⊆ Mh ⊆ (Mh)
µ implying Mh is maximal.

This raises the question of the existence of a representative function
for the monotone set Mh ∪ {(x, x∗)}? We need to include
{(x, x∗) , ⟨x, x∗⟩} into the graph of the new representative function g,
via convexification.
In effect we are seeking a representative function for a monotone
extension of Mh to include the new point. As a consequence we
quickly obtain that when h ∈ bR(T) we have Mh monotonically
closed.
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Suppose h ∈ bR (T) and that Mh is not maximal. Let (x, x∗) /∈ Mh and
consider a convex minorant defined by

g := co[h, δ{(x,x∗)} + ⟨x, x∗⟩] ≤ h (1)
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To study the problem of maximality we use the construction in (1) to
define a minorising convex function g ∈ b (T) whenever there exists a
point (x, x∗) ∈ (Mh)

µ ∩ (Mh)
c.

The challenge is to show that there is a choice of
(x, x∗) ∈ (Mh)

µ ∩ (Mh)
c for which M≤

g is monotone.
As we clearly have Mh ∪ {(x, x∗)} ⊆ M≤

g this will only be the case if
M≤

g ⊆ (Mh ∪ {(x, x∗)})µ.

Lemma
Suppose h ∈ bR (T) and (x, x∗) ∈ (Mh)

µ ∩ (Mh)
c. Let g be the function

constructed via (1). Then when M≤
g is monotone we have

M≤
g ⊆ {(x, x∗)}µ . (2)

Moreover (2) is equivalent to M≤
g ⊆ (Mh ∪ {(x, x∗)})µ .
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Theorem
(Monotone Extensions and Maximality) Let h ∈ bR (T) and let g be
defined as in (1) using (x, x∗) ∈ (Mh)

µ ∩ (Mh)
c.

1 When (z, z∗) ∈ {(x, x∗)}µ then g (z, z∗) ≥ ⟨z, z∗⟩.
2 When (2) holds, then g ∈ bR (Mg) and g ≥ FMg = FM≤

g
.

3 If FMh ≥ ⟨·, ·⟩, then hs×w∗
∈ bR (T).

4 The function

f (z, z∗) := max {g (z, z∗) , ⟨z, x∗⟩+ ⟨z∗, x⟩ − ⟨x, x∗⟩} . (3)

is always representative and Mf = M≤
g ∩ {(x, x∗)}µ is a monotone

extension of Mh ∪ {(x, x∗)}.
5 If Mh is not maximal, then there cannot exist

(x, x∗) ∈ (Mh)
µ ∩ (Mh)

c such that (2) holds for g.
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As a consequence we may prove the following theorems.

Theorem
A monotone operator M is monotonically closed iff M is representable i.e.
there exists h ∈ bR (M) such that M = Mh. That is we always have

(Mh)
µµ = Mh.

We say that an operator T : X ⇒ X∗ is completely closed iff 1). for any
bounded net (xα, x∗α) → (x, x∗) with (xα, x∗α) ∈ T we have (x, x∗) ∈ T. 2).
whenever (xα, x∗α) ∈ T with xα → x ∈ domT and ∥x∗α∥ → ∞ we have
∃tα → 0+ such that along some subnet tαx∗α →w∗ x∗ ∈ 0+T (x).

Theorem
(Complete Closure of Representable Operators) If have M = Mh for
h ∈ bR (T) then M is completely closed.
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Sum Theorem
Then the partial inf-convolutions are the functions defined on X × Y by

F1�1F2 : (x, y) 7→ infu∈X [F1(u, y) + F2(x − u, y)]
F1�2F2 : (x, y) 7→ infv∈Y [F1(x, y − v) + F2(x, v)] .

Theorem (Generic Sum Theorem tool)

Let X be a nonzero, real Banach space. Let T1 and T2 be maximal
monotone operators from X to X∗. Suppose Fi ∈ bR (Ti) are
representative functions for Ti, for i = 1, 2 and∪

λ>0
λ
[
PX domF1 − PX domF2

]
is a closed subspace of X. (4)

Then F := F1�2F2 gives a bigger–conjugate representative function for
T1 + T2 (i.e. F ∈ bR (T1 + T2)) for which MF = T1 + T2. Consequently
T1 + T2 is representable and hence monotonically closed i.e.
(T1 + T2)

µµ = T1 +T2. Note (4) is implied by domT1 ∩ int domT2 ̸= ∅.
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The FPV property for T can now be written as (T|U)µ |U ⊆ T for
any open convex neighbourhood U with U ∩ domT ̸= ∅.

Let T̃1 := T1 ∩ [domT2 × X∗] = (T1) |domT2 .

Given an x ∈ domT1 ∩ int domT2 and an open convex set U with
x ∈ U ⊆ int domT2, we have by the properties of polarity:

(x, x∗) ∈
(

T̃1
)µ

= (T1|domT2)
µ ⊆

(
T1|[U∩domT2]

)µ
= (T1|U)µ

=⇒ (x, x∗) ∈ T.

This observation motivates us to study the operator
(

T̃1
)µ

|domT2 .
Ultimately we will consider the case when T2 = NC where
domT1 ∩ intC ̸= ∅ and C is a closed convex set.
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In the following we denote by (T1 + T2)
µ : X ⇒ X∗ the operator whose

graph consists of all points monotonically related to the graph of T1 + T2.

Theorem
(Polar Sum Theorem) Suppose T1 and T2 are monotone operators from
X to X∗. Suppose T2 is conic valued and that 0 ∈ (T2)

µ (x) for all
x ∈ dom (T2)

µ. Then

(T1 + T2)
µ (x) =

(
T̃1

)µ
(x) + (T2)

µ (x) (5)

for x ∈ dom (T1 + T2)
µ

= dom
(

T̃1
)µ

∩ dom (T2)
µ ,

where T̃1 := T1 ∩ [domT2 × X∗] = (T1) |domT2 .
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Theorem
(Sum Maximality Theorem) Suppose T1 and T2 be monotone operators
from X to X∗ with domT1 ∩ domT2 ̸= ∅. Suppose T2 is conic valued
with also 0 ∈ Tµ

2 (x) for all x ∈ domTµ
2 and let T̃1 := T1|domT2 and

M :=
(

T̃1
)µ

|domTµ
2
. Then

Mµ ⊆ (T1 + T2)
µµ ⊆ Mµµ

so Mµ is monotone, and when M is monotone then (T1 + T2)
µµ is

maximal (i.e. (T1 + T2)
µ is pre-maximal) and hence T1 + T2 is maximal

if monotonically closed.

Note that the key assumptions that establishes maximality is the
monotonicity of the set M :=

(
T̃1

)µ
|domT2 .
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When T2 = NU(u) := (cone(U − u))◦ we obtain identities.

Lemma
(Polarity Lemma) Let T be maximal monotone from X to X∗ and U a open
convex set with domT ∩ U ̸= ∅. Then(

T + NU
)µ

=
(
T|U

)µ |U + NU =
(
T|U

)µ |U (6)

and
(
T + NU

)µµ
= T + NU =

((
T|U

)µ |U + NU

)µ
=

[(
T|U

)µ |U
]µ

. (7)

When T is of type FPV then

∅ ̸= domT ∩ U = dom
(
T|U

)µ ∩ U (8)

and domT ∩ U = dom
(
T|U

)µ ∩ U a convex set. (9)

Suppose in addition that X admits a strictly convex re-norm. Then we have

domT ∩ U = dom
(
T|U

)µ ∩ U. (10)
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The following is an important tool for the development of the sum theorem.
Essentially we need to know when

(
T|U

)µ |U is a monotone set. The implication
(11) suffices as it contains this set in another monotone set.

Proposition
Suppose T : X ⇒ X∗ is maximal monotone of type FPV and U ⊆ X is an open
convex set such that U ∩ domT ̸= ∅. Then we have

(u, u∗) ∈
(
T|U

)µ |U =⇒ u∗ + x∗ ∈ T (u) + NU (u), for all x∗ ∈ NU (u) .
(11)

when one of the following additional assumptions hold:

1 The convex set U is strictly convex (i.e. for any (u, u∗) , (v, v∗) ∈ bdU we
have λ (u, u∗) + (1 − λ) (v, v∗) ∈ U for some λ ∈ (0, 1)).

2 The space X admits a strictly convex re-norm.

In particular
(
T|U

)µ |U(u) ⊆ T (u) + NU (u) for all u.
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In view of Theorem 11 we have the following result which appears to
not be a consequence of the known sum theorems for operators of
type FPV where additional structural assumptions are made on
domT.

We note that the existence of a strictly convex re-norm is a very weak
assumption and such space contain reflexive Banach space, separable
Banach spaces, WCG spaces, duals of Asplund spaces due to the
duality between Gateau differentiability and strict convexity of the
dual norm.

Theorem (Normal Cone Sums)

Suppose X is a real Banach space that admits a strictly convex re-norm, T
is maximal monotone of type FPV and C is closed and convex with

domT ∩ int C ̸= ∅. (12)

Then T + NC is maximal monotone.
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We may now obtain a characterisation of the FPV property.

Corollary
Suppose X is a real Banach space with a strictly convex re-norm, T is
maximal monotone and C ⊆ X is closed, convex with (12) holding. Then
T + NC is maximal monotone iff T is of type FPV.

It is still possible that this basic sum theorem fails for some pathological
operators. This sum theorem issue can now be resolved by the resolution of
the following question, which to the authors knowledge still remain open.

Questions: Does there exists a maximal monotone operator on a real
Banach space X which is not of type FPV?
Does there exists FPV maximal monotone operators that fail to admit a
sum theorem with a normal cone of a (non)strictly convex set outside the
strictly convex re-normable spaces?
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We finish by observing the following.

Theorem
If T is maximal monotone on a real Banach space X that admits a strictly convex
re-norm. Then consider the following are all equivalent:

1 T is of type FPV i.e. for all open convex sets U we have
(y, y∗) ∈ (T|U)µ |U =⇒ (y, y∗) ∈ T.

2 Whenever U ⊆ X is an open, convex set such that U ∩ domT ̸= ∅, then we
have

(y, y∗) ∈
(
T|U

)µ |U =⇒ (y, y∗ + x∗) ∈ T + NU, for any x∗ ∈ NU (y) .
(13)

3 Whenever C is closed convex with domT ∩ intC ̸= ∅. Then we have

(T|C)µ |C ⊆ T + NC.

4 When C is a closed, convex set with domT ∩ int C ̸= ∅ then T + NC is
maximal monotone.
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Thank You!
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