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Introduction

Difference of convex (DC) programming

A function f : IRn → IR is called a DC if it can be represented as a

difference of two convex functions:

f(x) = f1(x)− f2(x)

where f1, f2 : IRn → IR are convex functions.
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Introduction

DC programming problem:

minimize f(x), x ∈ IRn

subject to

hi(x) = 0, i ∈ I, gj(x) ≤ 0, j ∈ J.

Functions f, hi, i ∈ I, gj, j ∈ J are DC functions.

Horst, Thoai, Tuy, An & Tao.

Branch & Bound, DCA (DC algorithms).
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Introduction

Difference of polyhedral (DP) programming

A function f : IRn → IR is called a DP if it can be represented as a

difference of two convex polyhedral functions:

f(x) = f1(x)− f2(x)

where functions f1 and f2 are convex polyhedral:

fi(x) = max
j∈Ji

ϕij(x)
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Introduction

DP programming problem:

minimize f(x), x ∈ IRn

subject to

hi(x) = 0, i ∈ I, gj(x) ≤ 0, j ∈ J.

Functions f, hi, i ∈ I, gj, j ∈ J are DP functions.

Federation University Australia, Ballarat, Victoria, Australia c©.



Introduction

A function f : IRn → IR is called a piecewise linear if there are finite

number of sets Di ⊂ IRn, i = 1, . . . ,m such that f(x) = fi(x), x ∈ Di
and the function fi is affine.

A continuous piecewise linear function f : IRn → IR can be

represented as a max-min of affine functions:

f(x) = max
i∈I

min
j∈Ji

ϕij(x).

ϕij(x) = 〈aij, x〉 + bij, aij ∈ IRn, bij ∈ IR.
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Introduction

Functions represented as a max-min of linear functions are DP:

f(x) = f1(x)− f2(x)

where

f1(x) = max
i∈I

 ∑
j∈Ji

ϕij(x) +
∑

k∈I,k 6=i
max
j∈Jk

∑
t∈Jk,t 6=j

ϕij(x)

 ,
f2(x) =

∑
i∈I

max
j∈Ji

∑
t∈Ji,t 6=j

ϕij(x).
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Introduction

There are many applications of such DP functions:

• Cluster analysis;

• Supervised data classification;

• Regression analysis;

• Clusterwise linear regression.
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Introduction

Global Optimization: the cutting angle method (Rubinov, 1997;

Bagirov and Rubinov, 2000). Let

l ∈ IRn+, l 6= 0,

I(l) = {i = 1, . . . , n : li > 0},

S =

x ∈ IRn+ :
n∑
i=1

xi = 1

 .
hj(x) = max

k≤j
min
i∈I(lk)

lki xi.

Main step in the cutting angle method is as follows:

minimize hj(x) subject to x ∈ S.
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Introduction

We consider the case when the function f is represented as a

difference of two maximum of linear functions:

f(x) = f1(x)− f2(x)

where

f1(x) = max
i∈I1

ϕ1i(x), f2(x) = max
i∈I2

ϕ2i(x).

First we consider the unconstrained piecewise linear optimization

problem:

minimize f(x) subject to x ∈ IRn
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Convex piecewise linear optimization

Consider the function

f(x) = max
i∈I

〈ci, x〉, ci ∈ IRn, I = {1, . . . ,m}. (1)

Its subdifferential is:

∂f(x) = co
{
ci, i ∈ R(x)

}
, R(x) =

{
i ∈ I : 〈ci, x〉 = f(x)

}
.

The necessary and sufficient optimality condition:

0n ∈ ∂f(x).
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Convex piecewise linear optimization

Demyanov (1968), Fisher, Northup and Shapiro (1975), Wolfe

(1975), Grinold (1972), Dantzig and Wolfe (1961), Brooks and

Geoffrion (1966), Eaves (1974), Hel, Wolfe and Growder (1974),

Bazaraa, Goode and Rardin (1978), Kiwiel (1985).
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Convex piecewise linear optimization

The minimization of the function (1) can be replaced by the

following LP problem:

minimize u

subject to

u ∈ IR, x ∈ IRn,

〈ci, x〉 ≤ u, i ∈ I
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Convex piecewise linear optimization

Let ε > 0 be given. f∗ = inf f(x).

Algorithm 1 Minimization of convex piecewise linear functions.

Step 1. Select a starting point x1 ∈ IRn and set k := 1.

Step 2. Compute v̄k ∈ IRn such that

‖v̄k‖2 = min
{
‖z‖2 : z ∈ ∂f(xk)

}
.

Step 3. If v̄k = 0 then the algorithm terminates.

Step 4. Set xk+1 := xk − αkv̄k where αk is computed as follows:

R̂(xk,−v̄k) =

{
i ∈ R(xk) : 〈ci,−v̄k〉 = max

v∈∂f(xk)
〈v,−v̄k〉

}
,

Federation University Australia, Ballarat, Victoria, Australia c©.



R̄(xk,−v̄k) =
{
i ∈ I \R(xk) : 〈ci,−v̄k〉 > 0

}
,

αk = min

{
〈ci − cj, xk〉
〈ci − cj, v̄k〉

, i ∈ R̂(xk,−v̄k), j ∈ R̄(xk,−v̄k)

}
.

Set k = k + 1 and go to Step 6.

Algorithm 1 is finite convergent.



DP programming

Now consider more general DP functions:

f(x) = max
i∈I1

ϕ1i(x)−max
j∈I2

ϕ2j(x). (2)

and DP programming problem:

minimize f(x) subject to x ∈ IRn. (3)

Here

f1(x) = max
i∈I1

ϕ1i(x), f2(x) = max
j∈I2

ϕ2j(x).
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DP programming

M. Gaudioso, G. Giallombardo, G. Miglionico: Minimizing

Piecewise-Concave Functions Over Polyhedra, Mathematics of

Operations Research, 43(2), 2017.

L. Polyakova: On global unconstrained minimization of the

difference of polyhedral functions, Journal of Global Optimization,

2011, Volume 50, Issue 2, pp 179–195.

Nguyen Thi Van HangNguyen Dong Yen, On the Problem of

Minimizing a Difference of Polyhedral Convex Functions Under

Linear Constraints, JOTA, 2016, Volume 171, Issue 2, pp 617642
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DP programming

For the Clarke subdifferential ∂f(x) we have

∂f(x) ⊂ ∂f1(x)− ∂f2(x).

Different stationary points can be defined for Problem (3):

A point x∗ is called an inf-stationary for the problem (3) if

∂f2(x∗) ⊂ ∂f1(x∗). (4)

A point x∗ is called a Clarke stationary for the problem (3) if

0 ∈ ∂f(x∗). (5)

Finally, a point x∗ is called a critical point of the problem (3) if

∂f1(x∗) ∩ ∂f2(x∗) 6= ∅. (6)
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DP programming

The function f can be rewritten as:

f(x) = min
j∈I2

max
i∈I1

{
ϕ1i(x)− ϕ2j(x)

}
.

Then the problem (3) can be replaced by |I2| convex problems of

the form:

minimize max
i∈I1

{
ϕ1i(x)− ϕ2j(x)

}
subject to x ∈ IRn, j ∈ I2.

Federation University Australia, Ballarat, Victoria, Australia c©.



DP programming

A function f : IRn → IR is called quasidifferentiable at a point x if it is

locally Lipschitz continuous, directionally differentiable at this point

and there exist convex, compact sets ∂f(x) and ∂f(x) such that:

f ′(x, d) = max
u∈∂f(x)

〈u, d〉 + min
v∈∂f(x)

〈v, d〉.

The pair of sets D(x) = [∂f(x), ∂f(x)] is called a quasidifferential of

the function f at a point x (Demyanov, Rubinov, 1979).

For the DP function:

D(x) = [∂f1(x),−∂f2(x)] .
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DP Programming

Let X ⊂ IRn be an open set. A function f is defined on X and it is

finite. We call this function codifferentiable at a point x ∈ X, if there

exist convex compact sets df(x) ⊂ IRn+1 and df(x) ⊂ IRn+1 such that

f(x + ∆) = f(x) + Φx(∆) + ox(∆)

where

Φx(∆) = max
(a,v)∈df(x)

[a + 〈v,∆〉] + min
(b,w)∈df(x)

[b + 〈w,∆〉] ,

ox(α∆)

α
−→α↓0 0, ∀∆ ∈ IRn.

Here a, b ∈ IR1, v, w ∈ IRn. We assume that co {x, x + ∆} ⊂ X.
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DP Programming

The pair Df (x) = [df(x), df(x)] is called a codifferential, the set df(x)

- hypodifferential and the set df(x) - hyperdifferential of the function

f at x.

A function f is said to be continuously codifferentiable at a point

x ∈ X if it is codifferentiable in some neighborhood of this point and

mappings x 7→ df(x), x 7→ df(x) are Hausdorf continuous.

The class of quasidifferentiable and codifferentiable functions

coincide. (Demyanov, 1988).
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DP programming

Consider the following maximum function

f(x) = max
i∈I

fi(x),

where functions fi are continuously differentiable. This function is

hypodifferentiable and its hypodifferential is as follows

df(x) = co {(a, v) ∈ IRn+1 : a = fi(x)− f(x), v = ∇fi(x), i ∈ I}.

Necessary condition for a minimum:

0n+1 ∈ [df(x) + [0, w]] ∀ [0, w] ∈ df(x).
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DP programming

Proposition 1 Let f be a DP function. Then for any x, y ∈ IRn

f(y)− f(x) = max
(η,v)∈df(x)

[η + 〈v, y − x〉] + min
(θ,w)∈df(x)

[θ + 〈w, y − x〉] . (7)

Corollary 1 Let f : IRn → IR be a DP function. Then at a point x

there exists ε > 0 such that

f(y) = f(x) + max
v∈∂f(x)

〈v, y − x〉 + min
w∈∂f(x)

〈w, y − x〉

for all y ∈ Bε(x).
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DP Programming: local optimality conditions

At a point x for given (0, w) ∈ df(x) consider the set

Lw(x) = (0, w) + df(x).

Proposition 2 A point x∗ ∈ IRn is a local minimizer of Problem (3)

if and only if the following condition holds:

0n+1 ∈ Lw(x∗) ∀(0, w) ∈ df(x). (8)
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DP Programming: local optimality conditions

At a point x for a given w ∈ ∂f(x) consider the set

Lw(x) = w + ∂f(x).

Proposition 3 The condition (8) is equivalent to the following

condition:

0n ∈ Lw(x∗) ∀w ∈ ∂f(x∗). (9)

Corollary 2 A point x∗ is a local minimizer of Problem (3) if and

only if the condition (9) holds.
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DP Programming: global optimality conditions

Consider the set

Lθw(x) = (θ, w) + df(x), (θ, w) ∈ df(x).

Proposition 4 Suppose that at a point x∗ ∈ IRn

0n+1 ∈ Lθw(x∗) ∀(θ, w) ∈ df(x∗). (10)

Then x∗ is a global minimizer of Problem (3).
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DP Programming: global optimality conditions

For a given point x ∈ IRn take any (θ, w) ∈ df(x) and define the

following sets:

dθf(x) = {((η, v) ∈ df(x) : η + θ ≥ 0} ,

L+
θw(x) = (θ, w) + dθf(x).

It is clear that dθf(x) 6= ∅ for any (θ, w) ∈ df(x).

Proposition 5 A point x∗ ∈ IRn is a global minimizer of Problem (3)

if and only if 0n ∈ {v : (η, v) ∈ L+
θw(x∗)} for any (θ, w) ∈ df(x∗).
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DP Programming: numerical algorithms

Assume that x ∈ IRn is not an inf-stationary point which means that

∂f2(x) 6⊂ ∂f1(x).

Let

R(x) = {(i, j) ∈ I1 × I2 : i ∈ R1(x), j ∈ R2(x)}.

At the point x we compute v̄ ∈ ∂f1(x) and w̄ ∈ ∂f2(x) such that

‖v̄ − w̄‖ = max
w∈∂f2(x)

min
v∈∂f1(x)

‖v − w‖. (11)

It is clear that ‖v̄ − w̄‖ > 0. Define the direction

d̄ = −(v̄ − w̄). (12)

A direction d0 = ‖d̄‖−1d̄ is the steepest descent direction of f at x.
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DP Programming: numerical algorithms

Compute λ̄ by

λ̄ = sup{λ : R(x + λd̄) ⊂ R(x)}.

If λ̄ =∞, then the function f is unbounded along the ray

{x + λd̄ : λ ≥ 0}. Main properties of the direction d̄ are summarized in

the following proposition.

Proposition 6 Assume that x ∈ IRn is not an inf-stationary point

and the direction d̄ is defined by (12). Then the following hold:

• λ̄ > 0;

• f(x + λd̄) ≤ f(x)− λ‖d̄‖2 for λ ∈ [0, λ̄).
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DP Programming: numerical algorithms

Algorithm 2 Local minimization of DP functions.

Step 1. Select any starting point x1. Set k := 1.

Step 2. If ∂f2(xk) ⊂ ∂f1(xk), then stop. xk is a local minimizer.

Otherwise, select jk ∈ R2(xk) such that

0 6= cjk ∈ Argmax

{
min

v∈∂f1(xk)
‖v − w‖ : w ∈ ∂f2(xk)

}
(13)

and solve the following problem:

minimize gjk(x) = f1(x)− 〈cjk, x〉 + djk subject to x ∈ IRn. (14)

If the problem is unbounded, then stop. Otherwise, let xk∗ be a

solution and go to Step 3.

Step 3. Set xk+1 := xk∗, k := k + 1 and go to Step 2.
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DP Programming: numerical algorithms

Algorithm 2 is finite convergent.

Next we design an algorithm for finding global minimizers of DP

functions. Let σ0 > 0 be a sufficiently small, µ > 0 be a sufficiently

large numbers and t > 1.
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DP Programming: numerical algorithms

Algorithm 3 Global minimization of DP functions.

Step 1. Select a starting point x1 ∈ IRn, set k := 1 and x̄k := xk.

Step 2. Apply Algorithm 2 starting from the point x̄k. This

algorithm terminates after finite number of iterations and either

finds that the problem is unbounded and computes the local

minimizer xk+1.

Step 3. If the problem is unbounded then the algorithm terminates.

Otherwise set k := k + 1 and σ := σ0.

Step 4. Compute z̄k(σ) = (āk(σ), v̄k(σ)) ∈ IRn+1 such that

‖z̄k(σ)‖2 = max
(σ,w)∈df(xk)

min{‖z‖2 : z ∈ Lwσ(xk)}.
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Step 5. If ‖z̄k(σ)‖ > 0 then set x̄k := xk − āk(σ)v̄k(σ) and go to Step 2.

Step 6. If ‖z̄k(σ)‖ = 0 then set σ := tσ. If σ > µ then stop, xk is a

global minimizer. Otherwise go to Step 4.

Algorithm 3 is finite convergent.



Constrained DP programming

minimize f(x)

subject to 〈gi, x〉 ≤ pi, i = 1 . . . , l
(15)

For a given x ∈ IRn, let αi(x) = 〈g, x〉 − pi.

Proposition 7 A point x∗ ∈ IRn is a global minimizer of Problem

(15) if and only if 0n ∈ co {v : (η, v) ∈ L+
θw(x∗)} ∪ {(αi(x∗), gi)} for any

(θ, w) ∈ df(x∗).
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