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Projectors and reflectors

Throughout this talk,
X := Rd .

Given a nonempty closed subset C of X , the projector onto C is defined by

PC : X ⇒ C : x 7→ PCx := argminc∈C ‖x − c‖
and reflector across C is

RC := 2PC − Id,

where Id is the identity operator on X .
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Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with A ∩ B 6= ∅. The feasibility problem is to
find x ∈ A ∩ B.

I AP operator: PBPA.

I DR operator: TA,B := 1
2 (Id +RBRA) (a.k.a. reflect-reflect-average).
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Convergence of AP and DR algorithms

When A and B are convex,

I the AP algorithm is globally convergent to a point in the intersection
(Bregman, 1965);

I the DR algorithm is globally convergent to a fixed point
(Lions–Mercier, 1979).

When A = ∪i∈IAi and B = ∪j∈JBi are finite unions of closed convex sets,

I the DR algorithm is locally convergent around strong fixed points
(Bauschke–Noll, 2014);

I is the AP algorithm locally convergent?

For a set-valued operator T : X ⇒ X , the fixed point set is FixT := {x : x ∈ T (x)},
and the strong fixed point set is FixT := {x : {x} = T (x)}. Both notions coincide for
single-valued operators.
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Averaged operators

Recall that a single-valued operator T : X → X is nonexpansive if

∀x , y ∈ X , ‖Tx − Ty‖ ≤ ‖x − y‖,

and α-averaged if α ∈ (0, 1) and

∀x , y ∈ X , ‖Tx − Ty‖2 +
1− α
α
‖(Id−T )x − (Id−T )y‖2 ≤ ‖x − y‖2.

I T is α-averaged if and only if T = (1− α) Id +αR for some
nonexpansive operator R : X → X .

I The classes of nonexpansive and averaged operators are both closed
under taking convex combination and under compositions.
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Union averaged operators

Definition

A set-valued operator T : X ⇒ X is said to be union α-averaged (resp.
union nonexpansive) if T can be expressed in the form

∀x ∈ X , T (x) = {Ti (x) : i ∈ ϕ(x)},
where

I I is a finite index set,

I {Ti}i∈I is a collection of α-averaged (resp. nonexpansive) operators,

I ϕ : X ⇒ I , called an active selector, is nonempty-valued and outer
semicontinuous (osc):

ϕ(x) ⊇ Limsupy→x ϕ(y) := {i ∈ I : ∃ (xn, in)→ (x , i) with in ∈ ϕ(xn)}.

T is union α-averaged if and only if T = (1− α) Id +αR for some union
nonexpansive operator R : X → X .
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Unions, combinations and compositions

Proposition

Let J := {1, . . . ,m} and let Tj : X ⇒ X be union αj -averaged (resp. union
nonexpansive) for each j ∈ J. Then

1 T : X ⇒ X defined by x 7→ T (x) := ∪j∈JTj(x) is union α-averaged
with α := maxj∈J αj (resp. union nonexpansive).

2
∑

j∈J ωjTj is union α-averaged with α :=
∑

j∈J ωjαj (resp. union
nonexpansive) whenever (ωj)j∈J ⊆ R++ with

∑
j∈J ωj = 1.

3 Tm ◦ · · · ◦ T2 ◦ T1 is union α-averaged with

α :=

1 +

∑
j∈J

αj

1− αj

−1−1

(resp. union nonexpansive).
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Min-convex functions

Definition

A function f : X → (−∞,+∞] is said to be min-convex if

∀x ∈ X , f (x) := min
i∈I

fi (x),

where I is a finite index set and the fi : X → (−∞,+∞] are proper lsc
convex functions.

If {Ci}i∈I is a finite collection of nonempty closed convex subsets of X ,
then

ιC = min
i∈I

ιCi

is a min-convex function.

The indicator function ιC of C is defined by ιC (x) := 0 if x ∈ C and ιC (x) := +∞
otherwise.
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Proximity operator of min-convex functions

Given f : X → (−∞,+∞] and γ > 0, the Moreau envelope of f is the
function γf : X → (−∞,+∞] given by

γf (x) := inf
y∈X

(
f (y) + 1

2γ ‖x − y‖2
)

and the proximity operator of f is the mapping proxγf : X ⇒ X given by

proxγf (x) =
{
y ∈ X : f (y) + 1

2γ ‖x − y‖2 = γf (x)
}
.

Proposition

Let f = mini∈I fi : X → (−∞,+∞] be min-convex, and γ > 0. Then

1 Every fixed point of proxγf is a local minimum of f .

2 proxγf is union 1/2-averaged. In particular,

proxγf (x) = {proxγfi (x) : i ∈ ϕ(x)}

with ϕ : X ⇒ I given by ϕ(x) = {i ∈ I : γf (x) = γfi (x)}.
Minh N. Dao Union Averaged Operators 12
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Projection operators on union convex sets

Corollary

Let A = ∪i∈IAi and B = ∪j∈JBj be finite unions of nonempty closed
convex sets in X . Then

1 The projector PA is union 1/2-averaged with

PA(x) = {PAi
(x) : i ∈ I , d(x ,Ai ) = d(x ,A)}

and the reflector RA := 2PA − Id is union nonexpansive.

2 The DR operator TA,B is union 1/2-averaged.

d(x ,C) := infc∈C ‖x − c‖ is the distance from x to C .
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Krasnosel’skĭı–Mann iterations with admissible control

Definition (Admissible sequences)

A sequence (in)n∈N ⊆ I is admissible in I ∗ ⊆ I if every element of I ∗

appears infinitely often in (in)n∈N.

Theorem

Let {Ti}i∈I be a finite collection of nonexpansive operators on X with a
common fixed point. Given x0 ∈ X , define (xn)n∈N according to

∀n ∈ N, xn+1 := (1− λn)xn + λnTin(xn),

where (in)n∈N is admissible in I , and (λn)n∈N is in (0, 1] with
lim infn→∞ λn(1− λn) > 0. Then xn → x ∈ ∩i∈I FixTi .

I The Ti are αi -averaged
−→ λn ∈ (0, 1/αin ] and lim infn→∞ λn(1− αinλn) > 0.
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Local convergence of union nonexpansive iterations

Let T : X ⇒ X be a union nonexpansive operator with representation

T (x) = {Ti (x) : i ∈ ϕ(x)}.
The radius of attraction of T at a point x∗ ∈ X is defined as

r(x∗;T ) := sup{δ > 0 : ∀x ∈ B(x∗; δ), ϕ(x) ⊆ ϕ(x∗)} ∈ (0,+∞] .

Theorem

Let x∗ ∈ FixT , set r := r(x∗;T ), and consider a sequence (xn)n∈N with
x0 ∈ intB(x∗; r) satisfying

∀n ∈ N, xn+1 ∈ (1− λn)xn + λnT (xn),

where (λn)n∈N ⊆ (0, 1] with lim infn→∞ λn(1− λn) > 0. Then

xn → x ∈ FixT ∩ B(x∗; r).

I T is union α-averaged: λn ∈ (0, 1/α] & lim infn→∞ λn(1/α− λn) > 0.
I ϕ(x∗) = I =⇒ r(x∗;T ) = +∞ −→ global convergence.
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Projection algorithms

Theorem

Let J := {1, . . . ,m} and let {Cj}j∈J be a collection of union convex sets.
Given x0 ∈ X , define xn+1 ∈ T (xn) for all n ∈ N in one of the following:

1 (method of cyclic projections) T = PCm ◦ · · · ◦ PC2 ◦ PC1 .

2 (cyclic DR method) T = TCm,C1 ◦ · · · ◦ TC2,C3 ◦ TC1,C2 .

3 (cyclically anchored DR method) T = TC1,Cm ◦ · · · ◦ TC1,C3 ◦ TC1,C2 .

Then ∩j∈JCj ⊆ FixT . Moreover, if x∗ ∈ FixT , then

∃r > 0, ∀x0 ∈ intB(x∗; r), xn → x ∈ FixT ∩ B(x∗; r).

Minh N. Dao Union Averaged Operators 18
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Cyclically anchored DR method

Theorem

Let J := {1, . . . ,m} and let {Cj}j∈J be a collection of union convex sets
with x∗ ∈ ∩j∈J\{1}FixTC1,Cj

. Given x0 ∈ X , define (xn)n∈N according to

∀n ∈ N, xn+1 ∈ TC1,Cin
(xn) where in = (n mod (m − 1)) + 2.

Then ∃r > 0, ∀x0 ∈ intB(x∗; r), xn → x ∈ ∩j∈J\{1} FixTC1,Cj
.

Moreover, if the set C1 is convex, then PC1(x) ∈ ∩j∈JCj .

I m = 2: Result by Bauschke–Noll (2014).

I Apply to {X ,C1, . . . ,Cm}: Result for the method of cyclic projections.
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Proximal algorithms

Let f : X → R be convex, g := mini∈I gi : X → (−∞,+∞] be min-convex,
and γ > 0.

I Proximal point algorithm (PPA): TPPA := proxγg .

I Forward–backward splitting (FBS): TFB := proxγg (Id−γ∇f ).

I Douglas–Rachford splitting (DRS):

TDR := 1
2

(
Id +(2 proxγg − Id) ◦ (2 proxγf − Id)

)
.

Theorem

I The PPA is locally convergent to a local minimum of g .

I The DRS is locally convergent to a fixed point x such that proxγf (x)
is a local minimum of f + g .

I If f has Lipschitz continuous gradient, then FBS is locally convergent
to a local minimum of f + g .
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THANK YOU VERY MUCH!
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