Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions

Minh N. Dao

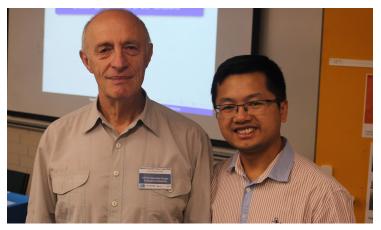
Priority Research Centre for Computer-Assisted Research Mathematics and its Applications (CARMA)

WoMBaT 2018 – Third Workshop on Metric Bounds and Transversality

Deakin University, Melbourne Burwood Campus, 29 November - 1 December 2018

Joint work with Matthew K. Tam (Universität Göttingen, Germany)

Happy Birthday, Alex!



Ballarat, February 2018

Outline

Union averaged operators

2 Convergence of fixed point algorithms

3 Proximal algorithms for min-convex minimization

Outline

Union averaged operators

2 Convergence of fixed point algorithms

3) Proximal algorithms for min-convex minimization

Projectors and reflectors

Throughout this talk,

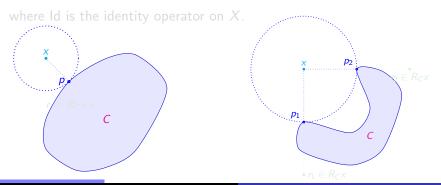
$$X:=\mathbb{R}^d.$$

Given a nonempty closed subset C of X, the projector onto C is defined by

$$P_C \colon X \rightrightarrows C \colon x \mapsto P_C x := \operatorname{argmin}_{c \in C} \|x - c\|$$

and reflector across C is

$$R_C := 2P_C - \mathsf{Id},$$



Projectors and reflectors

Throughout this talk,

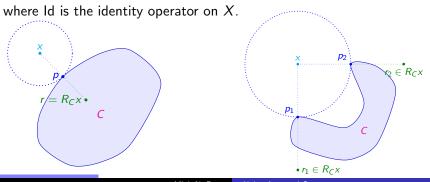
$$X:=\mathbb{R}^d.$$

Given a nonempty closed subset C of X, the projector onto C is defined by

$$P_C \colon X \rightrightarrows C \colon x \mapsto P_C x := \operatorname{argmin}_{c \in C} \|x - c\|$$

and reflector across C is

$$R_C := 2P_C - \mathsf{Id},$$



Alternating projections (AP) and Douglas-Rachford (DR) algorithm

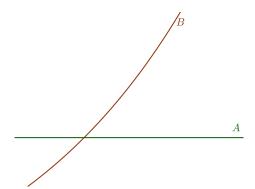
Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

• AP operator: $P_B P_A$.

Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

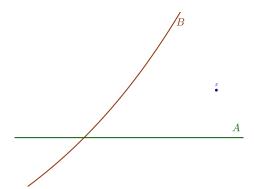
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

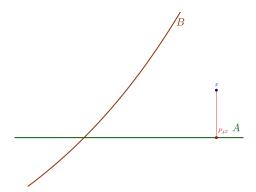
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

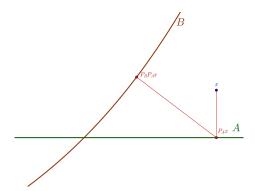
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

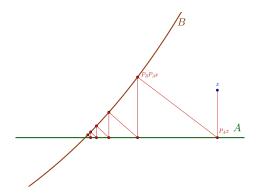
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

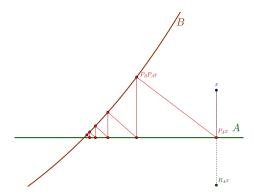
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

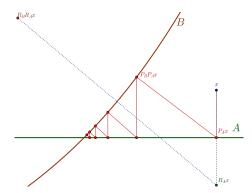
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

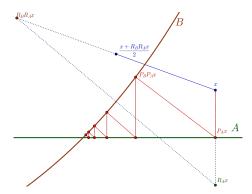
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

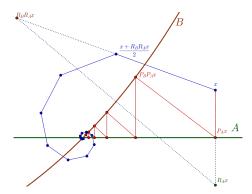
• AP operator: $P_B P_A$.



Alternating projections (AP) and Douglas–Rachford (DR) algorithm

Let A and B are closed sets with $A \cap B \neq \emptyset$. The feasibility problem is to find $x \in A \cap B$.

• AP operator: $P_B P_A$.



Convergence of AP and DR algorithms

When A and B are convex,

- the AP algorithm is globally convergent to a point in the intersection (Bregman, 1965);
- the DR algorithm is globally convergent to a fixed point (Lions-Mercier, 1979).

When $A = \bigcup_{i \in I} A_i$ and $B = \bigcup_{j \in J} B_j$ are finite unions of closed convex sets,

- the DR algorithm is locally convergent around strong fixed points (Bauschke–Noll, 2014);
- is the AP algorithm locally convergent?

For a set-valued operator $T: X \rightrightarrows X$, the fixed point set is Fix $T := \{x : x \in T(x)\}$, and the strong fixed point set is Fix $T := \{x : \{x\} = T(x)\}$. Both notions coincide for single-valued operators.

Convergence of AP and DR algorithms

When A and B are convex,

- the AP algorithm is globally convergent to a point in the intersection (Bregman, 1965);
- the DR algorithm is globally convergent to a fixed point (Lions-Mercier, 1979).

When $A = \bigcup_{i \in I} A_i$ and $B = \bigcup_{j \in J} B_j$ are finite unions of closed convex sets,

- the DR algorithm is locally convergent around strong fixed points (Bauschke–Noll, 2014);
- is the AP algorithm locally convergent?

For a set-valued operator $T: X \rightrightarrows X$, the fixed point set is Fix $T := \{x : x \in T(x)\}$, and the strong fixed point set is **Fix** $T := \{x : \{x\} = T(x)\}$. Both notions coincide for single-valued operators.

Averaged operators

Recall that a single-valued operator $T: X \to X$ is nonexpansive if

$$\forall x, y \in X, \quad \|Tx - Ty\| \le \|x - y\|,$$

and α -averaged if $\alpha \in (0,1)$ and

$$\forall x, y \in X, \quad \|Tx - Ty\|^2 + \frac{1 - \alpha}{\alpha} \|(\operatorname{Id} - T)x - (\operatorname{Id} - T)y\|^2 \le \|x - y\|^2.$$

- T is α-averaged if and only if T = (1 − α) ld +αR for some nonexpansive operator R: X → X.
- The classes of nonexpansive and averaged operators are both closed under taking convex combination and under compositions.

Averaged operators

Recall that a single-valued operator $T: X \to X$ is nonexpansive if

$$\forall x, y \in X, \quad \|Tx - Ty\| \le \|x - y\|,$$

and α -averaged if $\alpha \in (0,1)$ and

$$\forall x, y \in X, \quad \|Tx - Ty\|^2 + \frac{1 - \alpha}{\alpha} \|(\mathsf{Id} - T)x - (\mathsf{Id} - T)y\|^2 \le \|x - y\|^2.$$

- T is α-averaged if and only if T = (1 − α) ld +αR for some nonexpansive operator R: X → X.
- The classes of nonexpansive and averaged operators are both closed under taking convex combination and under compositions.

Union averaged operators

Definition

A set-valued operator $T: X \rightrightarrows X$ is said to be union α -averaged (resp. union nonexpansive) if T can be expressed in the form

$$\forall x \in X, \quad T(x) = \{T_i(x) : i \in \varphi(x)\},\$$

where

- I is a finite index set,
- ► $\{T_i\}_{i \in I}$ is a collection of α -averaged (resp. nonexpansive) operators,

 $\varphi(x) \supseteq \operatorname{Limsup}_{y \to x} \varphi(y) := \{i \in I : \exists (x_n, i_n) \to (x, i) \text{ with } i_n \in \varphi(x_n)\}.$

T is union α -averaged if and only if $T = (1 - \alpha) \operatorname{Id} + \alpha R$ for some union nonexpansive operator $R: X \to X$.

Union averaged operators

Definition

A set-valued operator $T: X \rightrightarrows X$ is said to be union α -averaged (resp. union nonexpansive) if T can be expressed in the form

$$\forall x \in X, \quad T(x) = \{T_i(x) : i \in \varphi(x)\},\$$

where

- I is a finite index set,
- ► $\{T_i\}_{i \in I}$ is a collection of α -averaged (resp. nonexpansive) operators,

 $\varphi(x) \supseteq \operatorname{Limsup}_{y \to x} \varphi(y) := \{i \in I : \exists (x_n, i_n) \to (x, i) \text{ with } i_n \in \varphi(x_n)\}.$

T is union α -averaged if and only if $T = (1 - \alpha) \operatorname{Id} + \alpha R$ for some union nonexpansive operator $R: X \to X$.

Unions, combinations and compositions

Proposition

Let $J := \{1, ..., m\}$ and let $T_j : X \rightrightarrows X$ be union α_j -averaged (resp. union nonexpansive) for each $j \in J$. Then

- $T: X \Rightarrow X$ defined by $x \mapsto T(x) := \bigcup_{j \in J} T_j(x)$ is union α -averaged with $\alpha := \max_{j \in J} \alpha_j$ (resp. union nonexpansive).
- **2** $\sum_{j \in J} \omega_j T_j$ is union α -averaged with $\alpha := \sum_{j \in J} \omega_j \alpha_j$ (resp. union nonexpansive) whenever $(\omega_j)_{j \in J} \subseteq \mathbb{R}_{++}$ with $\sum_{j \in J} \omega_j = 1$.

3
$$T_m \circ \cdots \circ T_2 \circ T_1$$
 is union α -averaged with

$$\alpha := \left(1 + \left(\sum_{j \in J} \frac{\alpha_j}{1 - \alpha_j}\right)^{-1}\right)^{-1}$$

(resp. union nonexpansive).

Min-convex functions

Definition

A function $f: X \to (-\infty, +\infty]$ is said to be min-convex if

$$\forall x \in X, \quad f(x) := \min_{i \in I} f_i(x),$$

where I is a finite index set and the $f_i: X \to (-\infty, +\infty]$ are proper lsc convex functions.

If $\{C_i\}_{i \in I}$ is a finite collection of nonempty closed convex subsets of X, then

 $\iota_C = \min_{i \in I} \iota_{C_i}$

is a min-convex function.

The indicator function ι_C of C is defined by $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

Min-convex functions

Definition

A function $f: X \to (-\infty, +\infty]$ is said to be min-convex if

$$\forall x \in X, \quad f(x) := \min_{i \in I} f_i(x),$$

where I is a finite index set and the $f_i: X \to (-\infty, +\infty]$ are proper lsc convex functions.

If $\{C_i\}_{i \in I}$ is a finite collection of nonempty closed convex subsets of X, then

$$\iota_C = \min_{i \in I} \iota_{C_i}$$

is a min-convex function.

The indicator function ι_C of C is defined by $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

Proximity operator of min-convex functions

Given $f: X \to (-\infty, +\infty]$ and $\gamma > 0$, the Moreau envelope of f is the function $\gamma f: X \to (-\infty, +\infty]$ given by

$$\gamma f(x) := \inf_{y \in X} \left(f(y) + \frac{1}{2\gamma} \|x - y\|^2 \right)$$

and the proximity operator of f is the mapping $\operatorname{prox}_{\gamma f} \colon X \rightrightarrows X$ given by

$$\operatorname{prox}_{\gamma f}(x) = \left\{ y \in X : f(y) + \frac{1}{2\gamma} \|x - y\|^2 = {}^{\gamma} f(x) \right\}.$$

Proposition

Let $f = \min_{i \in I} f_i \colon X \to (-\infty, +\infty]$ be min-convex, and $\gamma > 0$. Then

- Every fixed point of $\operatorname{prox}_{\gamma f}$ is a local minimum of f.
- **2** prox $_{\gamma f}$ is union 1/2-averaged. In particular,

$$\operatorname{prox}_{\gamma f}(x) = \{\operatorname{prox}_{\gamma f_i}(x) : i \in \varphi(x)\}$$

with $\varphi \colon X \rightrightarrows I$ given by $\varphi(x) = \{i \in I : \gamma f(x) = \gamma f_i(x)\}.$

Projection operators on union convex sets

Corollary

Let $A = \bigcup_{i \in I} A_i$ and $B = \bigcup_{j \in J} B_j$ be finite unions of nonempty closed convex sets in X. Then

• The projector P_A is union 1/2-averaged with

$$P_A(x) = \{P_{A_i}(x) : i \in I, \ d(x, A_i) = d(x, A)\}$$

and the reflector $R_A := 2P_A - Id$ is union nonexpansive.

2 The DR operator $T_{A,B}$ is union 1/2-averaged.

 $d(x, C) := \inf_{c \in C} ||x - c||$ is the distance from x to C.

Outline

Union averaged operators

2 Convergence of fixed point algorithms

Proximal algorithms for min-convex minimization

Krasnosel'skiĭ–Mann iterations with admissible control

Definition (Admissible sequences)

A sequence $(i_n)_{n \in \mathbb{N}} \subseteq I$ is admissible in $I^* \subseteq I$ if every element of I^* appears infinitely often in $(i_n)_{n \in \mathbb{N}}$.

Theorem

Let $\{T_i\}_{i \in I}$ be a finite collection of nonexpansive operators on X with a common fixed point. Given $x_0 \in X$, define $(x_n)_{n \in \mathbb{N}}$ according to

 $\forall n \in \mathbb{N}, \quad x_{n+1} := (1 - \lambda_n) x_n + \lambda_n T_{i_n}(x_n),$

where $(i_n)_{n\in\mathbb{N}}$ is admissible in I, and $(\lambda_n)_{n\in\mathbb{N}}$ is in (0,1] with $\liminf_{n\to\infty} \lambda_n(1-\lambda_n) > 0$. Then $x_n \to \overline{x} \in \bigcap_{i\in I} \operatorname{Fix} T_i$.

▶ The T_i are α_i -averaged $\longrightarrow \lambda_n \in (0, 1/\alpha_{i_n}]$ and $\liminf_{n\to\infty} \lambda_n (1 - \alpha_{i_n} \lambda_n) > 0$.

Krasnosel'skii–Mann iterations with admissible control

Definition (Admissible sequences)

A sequence $(i_n)_{n \in \mathbb{N}} \subseteq I$ is admissible in $I^* \subseteq I$ if every element of I^* appears infinitely often in $(i_n)_{n \in \mathbb{N}}$.

Theorem

Let $\{T_i\}_{i \in I}$ be a finite collection of nonexpansive operators on X with a common fixed point. Given $x_0 \in X$, define $(x_n)_{n \in \mathbb{N}}$ according to

$$\forall n \in \mathbb{N}, \quad x_{n+1} := (1 - \lambda_n) x_n + \lambda_n T_{i_n}(x_n),$$

where $(i_n)_{n\in\mathbb{N}}$ is admissible in I, and $(\lambda_n)_{n\in\mathbb{N}}$ is in (0,1] with $\liminf_{n\to\infty} \lambda_n(1-\lambda_n) > 0$. Then $x_n \to \overline{x} \in \bigcap_{i\in I} \operatorname{Fix} T_i$.

▶ The T_i are α_i -averaged $\longrightarrow \lambda_n \in (0, 1/\alpha_{i_n}]$ and $\liminf_{n\to\infty} \lambda_n (1 - \alpha_{i_n} \lambda_n) > 0$.

Krasnosel'skii–Mann iterations with admissible control

Definition (Admissible sequences)

A sequence $(i_n)_{n \in \mathbb{N}} \subseteq I$ is admissible in $I^* \subseteq I$ if every element of I^* appears infinitely often in $(i_n)_{n \in \mathbb{N}}$.

Theorem

Let $\{T_i\}_{i \in I}$ be a finite collection of nonexpansive operators on X with a common fixed point. Given $x_0 \in X$, define $(x_n)_{n \in \mathbb{N}}$ according to

$$\forall n \in \mathbb{N}, \quad x_{n+1} := (1 - \lambda_n) x_n + \lambda_n T_{i_n}(x_n),$$

where $(i_n)_{n\in\mathbb{N}}$ is admissible in I, and $(\lambda_n)_{n\in\mathbb{N}}$ is in (0,1] with $\liminf_{n\to\infty} \lambda_n(1-\lambda_n) > 0$. Then $x_n \to \overline{x} \in \bigcap_{i\in I} \operatorname{Fix} T_i$.

► The T_i are α_i -averaged $\longrightarrow \lambda_n \in (0, 1/\alpha_{i_n}]$ and $\liminf_{n\to\infty} \lambda_n (1 - \alpha_{i_n}\lambda_n) > 0$.

Local convergence of union nonexpansive iterations

Let $T: X \rightrightarrows X$ be a union nonexpansive operator with representation $T(x) = \{T_i(x) : i \in \varphi(x)\}.$

The radius of attraction of T at a point $x^* \in X$ is defined as

 $r(x^*; T) := \sup\{\delta > 0 : \forall x \in \mathbb{B}(x^*; \delta), \ \varphi(x) \subseteq \varphi(x^*)\} \in (0, +\infty].$

Theorem

Let $x^* \in Fix T$, set $r := r(x^*; T)$, and consider a sequence $(x_n)_{n \in \mathbb{N}}$ with $x_0 \in int \mathbb{B}(x^*; r)$ satisfying

 $\forall n \in \mathbb{N}, \quad x_{n+1} \in (1 - \lambda_n) x_n + \lambda_n T(x_n),$

where $(\lambda_n)_{n\in\mathbb{N}} \subseteq (0,1]$ with $\liminf_{n\to\infty} \lambda_n(1-\lambda_n) > 0$. Then $x_n \to \overline{x} \in \operatorname{Fix} T \cap \mathbb{B}(x^*; r).$

T is union α-averaged: λ_n ∈ (0, 1/α] & lim inf_{n→∞} λ_n(1/α − λ_n) > 0.
φ(x*) = I ⇒ r(x*; T) = +∞ → global convergence.

Local convergence of union nonexpansive iterations

Let $T: X \rightrightarrows X$ be a union nonexpansive operator with representation $T(x) = \{T_i(x) : i \in \varphi(x)\}.$

The radius of attraction of T at a point $x^* \in X$ is defined as

 $r(x^*; T) := \sup\{\delta > 0 : \forall x \in \mathbb{B}(x^*; \delta), \ \varphi(x) \subseteq \varphi(x^*)\} \in (0, +\infty].$

Theorem

Let $x^* \in Fix T$, set $r := r(x^*; T)$, and consider a sequence $(x_n)_{n \in \mathbb{N}}$ with $x_0 \in int \mathbb{B}(x^*; r)$ satisfying

 $\forall n \in \mathbb{N}, \quad x_{n+1} \in (1 - \lambda_n) x_n + \lambda_n T(x_n),$

where $(\lambda_n)_{n \in \mathbb{N}} \subseteq (0, 1]$ with $\liminf_{n \to \infty} \lambda_n (1 - \lambda_n) > 0$. Then $x_n \to \overline{x} \in \operatorname{Fix} T \cap \mathbb{B}(x^*; r).$

► *T* is union α -averaged: $\lambda_n \in (0, 1/\alpha]$ & lim inf $_{n \to \infty} \lambda_n (1/\alpha - \lambda_n) > 0$. ► $\varphi(x^*) = I \implies r(x^*; T) = +\infty \longrightarrow$ global convergence.

Outline

Union averaged operators

2 Convergence of fixed point algorithms

3 Proximal algorithms for min-convex minimization

Projection algorithms

Theorem

Let $J := \{1, ..., m\}$ and let $\{C_j\}_{j \in J}$ be a collection of union convex sets. Given $x_0 \in X$, define $x_{n+1} \in T(x_n)$ for all $n \in \mathbb{N}$ in one of the following:

- (method of cyclic projections) $T = P_{C_m} \circ \cdots \circ P_{C_2} \circ P_{C_1}$.
- $(cyclic DR method) T = T_{C_m,C_1} \circ \cdots \circ T_{C_2,C_3} \circ T_{C_1,C_2}.$

• (cyclically anchored DR method) $T = T_{C_1,C_m} \circ \cdots \circ T_{C_1,C_3} \circ T_{C_1,C_2}$. Then $\bigcap_{j \in J} C_j \subseteq \operatorname{Fix} T$. Moreover, if $x^* \in \operatorname{Fix} T$, then

 $\exists r > 0, \ \forall x_0 \in \operatorname{int} \mathbb{B}(x^*; r), \quad x_n \to \overline{x} \in \operatorname{Fix} T \cap \mathbb{B}(x^*; r).$

Cyclically anchored DR method

Theorem

Let $J := \{1, \ldots, m\}$ and let $\{C_j\}_{j \in J}$ be a collection of union convex sets with $x^* \in \bigcap_{j \in J \setminus \{1\}} Fix T_{C_1, C_j}$. Given $x_0 \in X$, define $(x_n)_{n \in \mathbb{N}}$ according to

 $\forall n \in \mathbb{N}, \quad x_{n+1} \in T_{C_1,C_{i_n}}(x_n) \quad where \quad i_n = (n \mod (m-1)) + 2.$

Then $\exists r > 0$, $\forall x_0 \in \operatorname{int} \mathbb{B}(x^*; r)$, $x_n \to \overline{x} \in \bigcap_{j \in J \setminus \{1\}} \operatorname{Fix} T_{C_1, C_j}$. Moreover, if the set C_1 is convex, then $P_{C_1}(\overline{x}) \in \bigcap_{j \in J} C_j$.

• m = 2: Result by Bauschke–Noll (2014).

Apply to $\{X, C_1, \ldots, C_m\}$: Result for the method of cyclic projections.

Cyclically anchored DR method

Theorem

Let $J := \{1, \ldots, m\}$ and let $\{C_j\}_{j \in J}$ be a collection of union convex sets with $x^* \in \bigcap_{j \in J \setminus \{1\}} Fix T_{C_1, C_j}$. Given $x_0 \in X$, define $(x_n)_{n \in \mathbb{N}}$ according to

 $\forall n \in \mathbb{N}, \quad x_{n+1} \in T_{C_1,C_{i_n}}(x_n) \quad where \quad i_n = (n \mod (m-1)) + 2.$

Then $\exists r > 0$, $\forall x_0 \in \operatorname{int} \mathbb{B}(x^*; r)$, $x_n \to \overline{x} \in \bigcap_{j \in J \setminus \{1\}} \operatorname{Fix} T_{C_1, C_j}$. Moreover, if the set C_1 is convex, then $P_{C_1}(\overline{x}) \in \bigcap_{j \in J} C_j$.

- m = 2: Result by Bauschke–Noll (2014).
- Apply to $\{X, C_1, \ldots, C_m\}$: Result for the method of cyclic projections.

Proximal algorithms

Let $f: X \to \mathbb{R}$ be convex, $g := \min_{i \in I} g_i \colon X \to (-\infty, +\infty]$ be min-convex, and $\gamma > 0$.

- Proximal point algorithm (PPA): $T_{\text{PPA}} := \text{prox}_{\gamma g}$.
- ► Forward-backward splitting (FBS): $T_{\text{FB}} := \operatorname{prox}_{\gamma g}(\operatorname{Id} \gamma \nabla f)$.
- Douglas–Rachford splitting (DRS):

$$T_{\mathrm{DR}} := \frac{1}{2} \left(\mathsf{Id} + (2 \operatorname{prox}_{\gamma g} - \mathsf{Id}) \circ (2 \operatorname{prox}_{\gamma f} - \mathsf{Id}) \right)$$

Theorem

- ► The PPA is locally convergent to a local minimum of g.
- ► The DRS is locally convergent to a fixed point \overline{x} such that $\operatorname{prox}_{\gamma f}(\overline{x})$ is a local minimum of f + g.
- ► If f has Lipschitz continuous gradient, then FBS is locally convergent to a local minimum of f + g.

Some key references

- H.H. Bauschke and D. Noll, On the local convergence of the Douglas–Rachford algorithm, *Arch. Math.* **102**(6), 589–600 (2014).
- M.N. Dao and M.K. Tam, Union averaged operators with applications to proximal algorithms for min-convex functions, J. Optim. Theory Appl. (2018). DOI:10.1007/s10957-018-1443-x
- L. Elsner, I. Koltracht, and M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, *Numer. Math.* **62**(3), 305–319 (1992).
- M.K. Tam, Algorithms based on unions of nonexpansive maps, *Optim. Lett.* **12**(5), 1019–1027 (2018).

THANK YOU VERY MUCH!