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Transversality is about
separation and intersection of possibly convex sets. Separation is
closely related to extensions of linear mappings.
So this talk will be about
separation; intersection of balls; extensions of linear operators.



The geometric form of the Hahn(1927)-Banach(1929) theorem,
also known as the separation theorem, has numerous uses in
convex geometry, optimization theory, functional analysis, and
elsewhere. The separation theorem is equivalent to the extension
form of the Hahn-Banach theorem, of which we state the
simplest version now.

Theorem
If f : M → R is a continuous linear functional defined on a linear
subspace M of a normed space X , then there exists a linear
extension F : X → R of f to the whole space X , with ‖F‖ = ‖f ‖.



The proof has two key ingredients:

Extension to a space with dimension only one more
and

Zorn’s Lemma (or the ultrafilter lemma).

We will concentrate on the former, and examine the proof now.
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If X is only one dimension bigger than M, we can define a linear
extension of f by specifying its value at a single point v ∈ X \M.
How do we ensure that the extension F has the same norm?
Any x ∈ X can be written as x = m + λv for some m ∈ M, λ ∈ R.
So we need to check that

|F (m + λv)| 6 ‖f ‖‖m + λv‖

always holds. We can assume ‖f ‖ = 1. A little rearranging shows
that we need to have

f (m)− ‖v −m‖ 6 F (v) 6 f (m) + ‖v −m‖

for every m ∈ M. Is this possible?



The triangle inequality implies

f (m1)− ‖v −m1‖ 6 f (m2) + ‖v −m2‖

for all m1,m2 ∈ M and so

sup
m∈M

f (m)− ‖v −m‖ 6 inf
m∈M

f (m) + ‖v −m‖.

Thus we can choose F (v) to be any number between

sup
m∈M

f (m)− ‖v −m‖

and
inf

m∈M
f (m) + ‖v −m‖.



The question now is: what properties of R make this proof work?
What other target spaces can we replace R with, and still get a
useful result? On what essential property of the real numbers does
the usual proof of the extensibility of linear functionals rest?



Gleb Akilov was the first to attack this problem, in 1947. Realising
the role played by order in this proof, he worked with normed
vector lattices which had recently been introduced by
Kantorovitch. Amongst other things, he proved the following.

Theorem
Let Y be a Banach lattice in which every set which is bounded
above possesses an exact supremum and the unit ball of Y has a
maximal element. Then Y may replace R in the statement of the
Hahn-Banach Theorem.



However the property of F (v) which we required may also be
written in the following way:

F (v) ∈ [f (m)− ‖v −m‖, f (m) + ‖v −m‖]

for every m ∈ M.

Now an interval [a, b] in R is also a closed ball
(with centre 1

2(a + b) and radius 1
2 |a− b|).

Leopoldo Nachbin (1949) abstracted out this property of Banach
space, now known as the binary intersection property: every
collection of closed balls, any two members of which intersect, has
nonempty intersection.

Theorem
A real normed space has the extension property if and only if its
closed balls have the binary intersection property.
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Several authors (Dwight Goodner, Morisuke Hasumi, John Kelley)
built on all this, to show that a Banach space has the extension
property if and only if it is equivalent to a space C (K ) of all
real-valued continuous functions on some totally disconnected
compact Hausdorff space K . Total disconnectedness is a strange
property; examples include finite spaces, and the Stone-Čech
compactifications of discrete sets.



The complex numbers do not have the binary intersection property!
But the Hahn-Banach Theorem works for them.

It was extended
from the real case to the complex case in 1938 by Bohnenblust and
Sobczyk, and Soukhomlinoff. The trick used for the extension is
not entirely natural.
J.A.R. Holbrook (1975) and O. Hustad (1974) independently
proved that the complex (and the real) numbers have the following
intersection property.
A finite collection B(xi , ri ) of closed balls has non-empty mutual
intersection

⋂
i B(xi , ri ) if and only if

whenever λi are scalars with
∑

i λi = 0, then∣∣∣∣∣∑
i

λixi

∣∣∣∣∣ 6∑
i

|λi |ri .

Using this formally weaker intersection property instead of the
binary intersection property then gives a natural proof of the
Hahn-Banach Theorem for both scalar fields.
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Carrying on, a collection B(xi , ri ) of closed balls in a Banach space
X is declared to have the weak intersection property if and only if
whenever λi are scalars with

∑
i λi = 0, then∥∥∥∥∥∑

i

λixi

∥∥∥∥∥ 6
∑
i

|λi |ri .

With the same argument, it follows that a (real or complex)
Banach space has the extension property if and only if every family
of balls with the weak intersection property actually has non-empty
mutual intersection.



Aronszajn and Panitchpakdi (1956) also considered the properties
defined by collections of intersecting balls with limited cardinality.
This theme was continued by Joram Lindenstrauss (1964), who
defined a sequence of weaker intersection properties:
A Banach space has the n.2.i.p. if, for every n open balls
B1,B2, . . . ,Bn which intersect pairwise, the mutual intersection⋂n

i=1 Bi is non-empty.

Theorem
For any real Banach space Y , the following are equivalent.
i) Y has the 4.2.i.p,
ii) Y has the n.2.i.p for every n,
iii) Y ∗∗ has the Hahn-Banach extension property,
iv) Y ∗ is isometric to L1(µ) for some measure µ,
v) for every Banach space X , subspace M, compact operator
k : M → Y , there is a compact extension K : X → Y with almost
the same norm.
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Now we introduce a subspace into the mix of intersecting balls: a
subspace J is said to have the n-ball property in X if, whenever
B1, . . . ,Bn are open balls in X , with

⋂n
i=1 Bi non-empty and J ∩Bi

non-empty for each i , then we also have J ∩
⋂n

i=1 Bi non-empty.

This property is not a property of either J or X ; rather it describes
the way J sits inside X .
It is well known now that the 3-ball property implies the n-ball
property for all n, and this happens if and only if J0 is an
L-summand in X ∗; such subspaces are called M-ideals. Examples
of M-ideals include any ideal in a C ∗-algebra; many ideals in
uniform algebras; and the compact operators in B(`p), for
1 < p <∞.
These concepts were introduced by Alfsen and Effros (1973).
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Lima (1977) gave a more elegant presentation of the basic theory
of M-ideals, by pushed the ideas of Hustad further:

Theorem
Let X be a Banach space, J a closed subspace, and fix open balls
B(a1, r1) . . . ,B(an, rn) in X . Then the following are equivalent.

i J ∩
⋂n

i=1 B(ai , ri ) is non-empty,

ii whenever f1, . . . , fn ∈ X ∗ satisfy
∑

i fi ∈ J0 then
|
∑

i fi (ai )| 6
∑

i ri‖fi‖.

In other words, mutual intersections of a family of balls and a
subspace is described by an inequality involving functionals whose
sum annihilates the subspace.
This is proved by embedding the family into a product space, and
trying to separate it from the diagonal.



The literature on M-ideals is now vast, with applications to
operator algebras, harmonic analysis, approximation theory and
other fields.
Enough . . .




