On differential variational inequalities associated with solution schemes for solving maximally monotone inclusion problems

Ewa Bednarczuk, Krzysztof Rutkowski

Faculty of Mathematics and Information Science
Warsaw University of Technology
System Research Institute
Polish Academy of Sciences

Third Workshop on Metric Bounds and Transversality
Melbourne 29.11-01.12.2018
this talk is dedicated to Alexander Kruger on the occasion of his 65th birthday

Contents

(1) Problem statement

2 Best approximation algorithm
(3) Optimization and Dynamical Systems
(4) Projected Dynamical System
(5) Lipschitzness of projection onto moving polyhedral sets

Operator inclusions problem

Let \mathcal{H}, \mathcal{G} be Hilbert spaces, $A: \mathcal{H} \rightarrow \mathcal{H}, B: \mathcal{G} \rightarrow \mathcal{G}$ be maximally monotone operators and $L: \mathcal{H} \rightarrow \mathcal{G}$ be a linear, bounded continuous operator. We are interested in finding a point $u \in \mathcal{H}$ which solves the following inclusion problem

$$
\begin{equation*}
0 \in A u+L^{*} B L u . \tag{P}
\end{equation*}
$$

The dual inclusion problem to (5) is to find $v^{*} \in \mathcal{G}$ such that

$$
\begin{equation*}
0 \in-L A^{-1}\left(-L v^{*}\right)+B^{-1} v^{*} . \tag{D}
\end{equation*}
$$

A point $u \in \mathcal{H}$ solves (5) if and only if $v^{*} \in \mathcal{G}$ solves (D) and $\left(u, v^{*}\right) \in Z$, where

$$
Z:=\left\{\left(u, v^{*}\right) \in \mathcal{H} \times \mathcal{G} \mid-L^{*} v^{*} \in A u \quad \text { and } \quad L u \in B^{-1} v^{*}\right\} .
$$

Z is a closed convex set. We assume that Z is nonempty.
The aim is to find a point from Z.

The approach

The idea of Eckstein and Svaiter is to construct halfspaces satisfying

$$
Z \subset H_{\varphi}:=\left\{\left(u, v^{*}\right) \in \mathcal{H} \times \mathcal{H} \mid \varphi\left(u, v^{*}\right) \leq 0\right\}
$$

(in their original formulation $L=I d$), with

$$
\varphi\left(u, v^{*}\right):=\left\langle u-b \mid b^{*}-v^{*}\right\rangle+\left\langle u-a \mid a^{*}+v^{*}\right\rangle, \quad\left(a, a^{*}\right) \in \operatorname{gph} A, \quad\left(b, b^{*}\right) \in \operatorname{gph} B .
$$

This idea has been continued by Zhang and Cheng, Alatoibi and Combettes and Shahzad.
J. Eckstein and B. F. Svaiter. "A family of projective splitting methods for the sum of two maximal monotone operators". In:

Mathematical Programming 111.1 (2008), pp. 173-199. ISSN: 1436-4646. DOI: $10.1007 / \mathrm{s} 10107-006-0070-8$. URL:
http://dx.doi.org/10.1007/s10107-006-0070-8
Hui Zhang and Lizhi Cheng. "Projective splitting methods for sums of maximal monotone operators with applications". In: Journal of Mathematical Analysis and Applications 406.1 (2013), pp. 323 -334. ISSN: 0022-247X. DOI:
https://doi.org/10.1016/j.jmaa.2013.04.072

Relation to convex optimization problems

$A=\partial f, B=\partial g$ - subdifferentials of convex functions f and g, $f: \mathcal{H} \rightarrow]-\infty,+\infty] g: \mathcal{G} \rightarrow]-\infty,+\infty]$, proper, I.s.c.
under some constraint qualification our problem corresponds to the minimization

$$
\operatorname{minimize}_{x \in \mathcal{H}} f(x)+g(L x)
$$

the Fenchel-Rockafellar dual problem

$$
\operatorname{minimize}_{v^{*} \in \mathcal{G}} f^{*}\left(-L^{*} v^{*}\right)+g^{*}\left(v^{*}\right)
$$

and the associated Kuhn-Tucker set is the set Z coincides with (3)

$$
Z=\left\{\left(x, v^{*}\right) \in \mathcal{H} \times \mathcal{G} \mid-L^{*} v^{*} \in \partial f(x) \text { and } L x \in \partial g^{*}\left(v^{*}\right)\right\}
$$

the set Z is a natural extension of the Kuhn-Tucker set

Inspiration - Eckstein and Svaiter, 2007 - decomposable separator

(1) original problem: $0 \in A x+B x$ (no L and $\mathcal{H}=\mathcal{G}$)
(2) extended solution set

$$
S_{e}(A, B)=\left\{\left(x, v^{*}\right) \in \mathcal{H} \times \mathcal{H} \mid-v^{*} \in A x \text { and } v^{*} \in B x\right\}
$$

(3) this is the Kuhn-Tucker set Z
(9) Fact 1: $x \in(A+B)^{-1}(0) \Leftrightarrow \exists v^{*} \in \mathcal{H}$ s.t. $\left(x, v^{*}\right) \in S_{e}(A, B)$

$$
\text { proof: } 0 \in A x+B x \equiv \exists v^{*} \in \mathcal{H}-v^{*} \in A x \text { and } v^{*} \in B x
$$

(0) Fact 2: $A, B: \mathcal{H} \rightrightarrows \mathcal{H}$, then $S_{e}(A, B)$ is closed and convex
(0) Let $\left(b, b^{*}\right) \in \operatorname{Gph} B$ and $\left(a, a^{*}\right) \in \operatorname{Gph} A$ and let $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$

$$
\varphi\left(x, v^{*}\right):=\left\langle x-b, b^{*}-v^{*}\right\rangle+\left\langle x-a, a^{*}+v^{*}\right\rangle
$$

(1) Fact 3. Given $\left(b, b^{*}\right) \in \operatorname{Gph} B$ and $\left(a, a^{*}\right) \in \operatorname{Gph} A$. We have
(1) $S_{e}(A, B) \subset\left\{\left(x, v^{*}\right) \in \mathcal{H} \times \mathcal{H} \mid \varphi\left(x, v^{*}\right) \leq 0\right\}$
(2) additionally: φ is both continuous and affine,

$$
\nabla \varphi=0 \Leftrightarrow\left(b, b^{*}\right) \in S_{e}(A, B), b=a, a^{*}=-b^{*}
$$

Inspiration - Eckstein and Svaiter, 2007 - the resulting algorithm

```
for \(k=0,1, \ldots\) do, start with arbitrary \(p_{0}=\left(x_{0}, v_{0}^{*}\right) \in \mathcal{H} \times \mathcal{H}\)
```

Choose $\left(b_{k}, b_{k}^{*}\right) \in \operatorname{Gph} B,\left(a_{k}, a_{k}^{*}\right) \in \operatorname{Gph} A$ Define

$$
\varphi_{k}\left(x, v^{*}\right):=\left\langle x-b_{k}, b_{k}^{*}-v^{*}\right\rangle+\left\langle x-a_{k}, a_{k}^{*}+v^{*}\right\rangle
$$

Compute $\bar{p}_{k}=\left(\bar{x}_{k}, \bar{v}_{k}^{*}\right)$ to be the projection of $p_{k}=\left(x_{k}, v_{k}^{*}\right)$ onto

$$
H_{k}:=\left\{\left(x, v^{*}\right) \in \mathcal{H} \times \mathcal{H} \mid \varphi_{k}\left(x, v^{*}\right) \leq 0\right\}
$$

Choose a relaxation parameter $\rho_{k} \in(0,2)$ and let

$$
p_{k+1}:=p_{k}+\rho_{k}\left(\bar{p}_{k}-p_{k}\right)
$$

6: end for
Rezolvent of subdifferential $J_{\lambda \partial f}$
(1) $\lambda>0, z=J_{\lambda \partial f}(x)=(I+\lambda \partial f)^{-1}(x)$, i.e. $x \in z+\lambda \partial f(z)$
(2) can be rewritten: $0 \in \partial_{z}\left(f(z)+\frac{1}{2} \lambda\|z-x\|_{2}^{2}\right)$
(3) which is the same as: $z=\operatorname{argmin}_{u}\left(f(u)+\frac{1}{2} \lambda\|u-x\|_{2}^{2}\right)=\operatorname{Prox}_{\lambda f}(x)=J_{\lambda \partial f}(x)$

Successive Fejér approximations iterative scheme

Let $\left\{H_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{H} \times \mathcal{G}$, be a sequence of convex closed sets such that $Z \subset H_{n}, n \in \mathbb{N}$. The projections of any $x \in \mathcal{H} \times \mathcal{G}$ onto H_{n} are uniquely defined.

```
Algorithm 1 Generic primal-dual Fejér Approximation Iterative Scheme
    Choose an initial point \(x_{0} \in \mathcal{H} \times \mathcal{G}\)
    Choose a sequence of parameters \(\left\{\lambda_{n}\right\}_{n \geq 0} \in(0,2)\)
    for \(n=0,1 \ldots\) do
    \(x_{n+1}=x_{n}+\lambda_{n}\left(P_{H_{n}}\left(x_{n}\right)-x_{n}\right)\)
    end for
```


Convergence result

Theorem

For any sequence generated by Iterative Scheme 1 the following hold:
(1) $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{H} \times \mathcal{G}$ is Fejér monotone with respect to the set Z, i.e

$$
\forall_{n \in \mathbb{N}} \forall_{z \in Z}\left\|x_{n+1}-z\right\| \leq\left\|x_{n}-z\right\|,
$$

(2) $\sum_{n=0}^{+\infty} \lambda_{n}\left(2-\lambda_{n}\right)\left\|P_{H_{n}}\left(x_{n}\right)-x_{n}\right\|^{2}<+\infty$,
(3) if

$$
\forall x \in \mathcal{H} \times \mathcal{G} \forall\left\{k_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{N} \quad x_{k_{n}} \rightharpoonup x \Longrightarrow x \in Z
$$

then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to a point in Z.

$$
\begin{align*}
H_{a_{n}, b_{n}^{*}} & :=\left\{x \in \mathcal{H} \times \mathcal{G} \mid\left\langle x \mid s_{a_{n}, b_{n}^{*}}^{*}\right\rangle \leq \eta_{a_{n}, b_{n}^{*}}\right\}, \tag{1}\\
s_{a_{n}, b_{n}^{*}}^{*} & :=\left(a_{n}^{*}+L^{*} b_{n}^{*}, b_{n}-L a_{n}\right), \eta_{a_{n}, b_{n}^{*}}:=\left\langle a_{n} \mid a_{n}^{*}\right\rangle+\left\langle b_{n} \mid b_{n}^{*}\right\rangle,
\end{align*}
$$

with

$$
\begin{aligned}
& a_{n}:=J_{\gamma_{n} A}\left(p_{n}-\gamma_{n} L^{*} v_{n}^{*}\right), \quad b_{n}:=J_{\mu_{n} B}\left(L p_{n}+\mu_{n} v_{n}^{*}\right), \\
& a_{n}^{*}:=\gamma_{n}^{-1}\left(p_{n}-a_{n}\right)-L^{*} v_{n}^{*}, \quad b_{n}^{*}:=\mu_{n}^{-1}\left(L p_{n}-b_{n}\right)+v_{n}^{*},
\end{aligned}
$$

It easy to see $H_{\varphi_{n}}=H_{a_{n}, b_{n}^{*}}$, where $\varphi_{n}=\varphi\left(a_{n}, b_{n}^{*}\right)$.

Best approximation iterative schemes

For any $x, y \in \mathcal{H} \times \mathcal{G}$ we define

$$
H(x, y):=\{h \in \mathcal{H} \times \mathcal{G} \mid\langle h-y \mid x-y\rangle \leq 0\} .
$$

As previously, let $\left\{H_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{H} \times \mathcal{G}$ be a sequence of closed convex sets, $Z \subset H_{n}$ for $n \in \mathbb{N}$.

```
Algorithm 2 Generic primal-dual best approximation iterative scheme
    Choose an initial point \(x_{0}=\left(p_{0}, v_{0}^{*}\right) \in \mathbf{H} \times \mathbf{G}\)
    Choose a sequence of parameters \(\left\{\lambda_{n}\right\}_{n \geq 0} \in(0,1]\)
    for \(n=0,1 \ldots\) do
        Fejérian step
        \(x_{n+1 / 2}=x_{n}+\lambda_{n}\left(P_{H_{n}}\left(x_{n}\right)-x_{n}\right)\)
        Let \(C_{n}\) be a closed convex set such that \(Z \subset C_{n} \subset H\left(x_{n}, x_{n+1 / 2}\right)\).
        Haugazeau step
        \(x_{n+1}=P_{H\left(x_{0}, x_{n}\right) \cap C_{n}}\left(x_{0}\right)\)
    end for
```

The choice of $C_{n}=H\left(x_{n}, x_{n+1 / 2}\right)$ has been already investigated in [1].

Convergence

Theorem

Let Z be a nonempty closed convex subset of $H \times G$ and let $x_{0}=\left(p_{0}, v_{0}^{*}\right) \in \mathbf{H} \times \mathbf{G}$. Let $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ be any sequence satisfying $Z \subset C_{n} \subset H\left(x_{n}, x_{n+1 / 2}\right), n \in \mathbb{N}$. For the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by Iterative Scheme 2 the following hold:
(1) $Z \subset H\left(x_{0}, x_{n}\right) \cap C_{n}$ for $n \in \mathbb{N}$,
(2) $\left\|x_{n+1}-x_{0}\right\| \geq\left\|x_{n}-x_{0}\right\|$ for $n \in \mathbb{N}$,
(3) $\sum_{n=0}^{+\infty}\left\|x_{n+1}-x_{n}\right\|^{2}<+\infty$,

- $\sum_{n=0}^{+\infty}\left\|x_{n+1 / 2}-x_{n}\right\|^{2}<+\infty$.
© If

$$
\forall x \in H \times G \forall\left\{k_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{N} \quad x_{k_{n}} \rightharpoonup x \Longrightarrow x \in Z,
$$

then $x_{n} \rightarrow P_{Z}\left(x_{0}\right)$.

Best approximation algorithm

Yves. Haugazeau. "Sur les inequations variationnelles et la minimisation de fonctionnelles convexes". French. PhD thesis. [S.I.]: [s.n.], 1968

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. With a foreword by Hédy Attouch. Springer, New York, 2011, pp. xvi+468. ISBN: 978-1-4419-9466-0. DOI: 10.1007/978-1-4419-9467-7. URL: http://dx.doi.org/10.1007/978-1-4419-9467-7

Abdullah Alotaibi, Patrick L. Combettes, and Naseer Shahzad. "Best approximation from the Kuhn-Tucker set of composite monotone inclusions". In: Numer. Funct. Anal. Optim. 36.12 (2015), pp. 1513-1532. ISSN: 0163-0563. DOI: 10.1080/01630563.2015.1077864. URL: http://dx.doi.org/10.1080/01630563.2015.1077864

Generic best approximation algorithm

Let $x_{0}=\left(u_{0}, v_{0}^{*}\right) \in \mathcal{H} \times \mathcal{G}$.
1: for $n=0,1, \ldots$ do
2: $\quad\left(u_{n+1}, v_{n+1}^{*}\right)=P_{H_{1}\left(x_{0},\left(u_{n}, v_{n}^{*}\right)\right) \cap H_{2}\left(u_{n}, v_{n}^{*}\right)}\left(x_{0}\right)$
3: end for
where

$$
\begin{aligned}
H_{1}\left(x_{0},\left(u, v^{*}\right)\right):= & \left\{h \in \mathcal{H} \times \mathcal{G} \mid\left\langle h-\left(u, v^{*}\right) \mid x_{0}-\left(u, v^{*}\right)\right\rangle \leq 0\right\}, \\
H_{2}\left(u, v^{*}\right):= & \left\{h \in \mathcal{H} \times \mathcal{G} \mid\left\langle h \mid g\left(u, v^{*}\right)\right\rangle \leq f\left(u, v^{*}\right)\right\}, \quad Z \subset H_{2}\left(u, v^{*}\right), \\
& g: \mathcal{H} \times \mathcal{G} \rightarrow \mathcal{H} \times \mathcal{G}, \quad f: \mathcal{H} \times \mathcal{G} \rightarrow \mathbb{R}
\end{aligned}
$$

for suitably chosen f and g.

$$
Z \subset H_{1}\left(x_{0},\left(u_{n}, v_{n}^{*}\right)\right) \cap H_{2}\left(u_{n}, v_{n}^{*}\right) \Longrightarrow Z \subset H_{1}\left(x_{0},\left(u_{n+1}, v_{n+1}^{*}\right)\right), \quad n \in \mathbb{N}
$$

Special case with resolvents

Let $x_{0}=\left(u_{0}, v_{0}^{*}\right) \in \mathcal{H} \times \mathcal{G}$.
for $n=0,1, \ldots$ do Pick $\left(\gamma_{n}, \mu_{n}\right) \in[\varepsilon, 1 / \varepsilon]^{2}$
$a\left(u_{n}, v_{n}^{*}\right)=J_{\gamma_{n} A}\left(u_{n}-\gamma_{n} L^{*} v_{n}^{*}\right), a^{*}\left(u_{n}, v_{n}^{*}\right)=\frac{1}{\gamma_{n}}\left(u_{n}-\gamma_{n} L^{*} v_{n}^{*}-a\left(u_{n}, v_{n}^{*}\right)\right)$
$b\left(u_{n}, v_{n}^{*}\right)=J_{\mu_{n} B}\left(L u_{n}+\mu_{n} v_{n}^{*}\right), b^{*}\left(u_{n}, v_{n}^{*}\right)=\frac{1}{\mu_{n}}\left(L u_{n}+\mu_{n} v_{n}^{*}-b\left(u_{n}, v_{n}^{*}\right)\right)$
if $s\left(u_{n}, v_{n}^{*}\right)=0$ then
$\bar{u}=a_{n}, \bar{v}^{*}=b_{n}^{*}, \quad\left(\bar{u}, \bar{v}^{*}\right) \in Z$
terminate
else
$\left(u_{n+1}, v_{n+1}^{*}\right)=P_{H_{1}\left(x_{0},\left(u_{n}, v_{n}^{*}\right)\right) \cap H_{2}\left(u_{n}, v_{n}^{*}\right)}\left(u_{0}, v_{0}^{*}\right)$
end if
end for

$$
\text { where } \begin{aligned}
s\left(u_{n}, v_{n}^{*}\right) & :=\left[\begin{array}{l}
a^{*}\left(u_{n}, v_{n}^{*}\right)+L^{*} b^{*}\left(u_{n}, v_{n}^{*}\right) \\
b\left(u_{n}, v_{n}^{*}\right)-\operatorname{La}\left(u_{n}, v_{n}^{*}\right)
\end{array}\right], \\
\eta\left(u_{n}, v_{n}^{*}\right) & :=\left\langle a\left(u_{n}, v_{n}^{*}\right) \mid a^{*}\left(u_{n}, v_{n}^{*}\right)\right\rangle+\left\langle b\left(u_{n}, v_{n}^{*}\right) \mid b^{*}\left(u_{n}, v_{n}^{*}\right)\right\rangle, \\
H_{2}\left(u_{n}, v_{n}^{*}\right) & :=\left\{h \in \mathcal{H} \times \mathcal{G} \mid\left\langle h \mid s\left(u_{n}, v_{n}^{*}\right)\right\rangle \leq \eta\left(u_{n}, v_{n}^{*}\right)\right\} .
\end{aligned}
$$

Theorem (Alatoibi, Combettes, Shahzad, 2015)

$\left(u_{n}\right)_{n \in \mathbb{N}}$ converges strongly to a point $\bar{u},\left(v_{n}\right)_{n \in \mathbb{N}}$ converges strongly to a point \bar{v}^{*} and $\left(\bar{u}, \bar{v}^{*}\right)=P_{Z}\left(x_{0}\right)$.

Lipschitzness of data

(1) Let $\left(u, v^{*}\right) \in D:=\operatorname{clB}\left(\frac{x_{0}+P_{Z}\left(x_{0}\right)}{2}, \frac{\left\|x_{0}-P_{Z}\left(x_{0}\right)\right\|}{2}\right)$. Then $P_{Z}\left(x_{0}\right) \in H_{1}\left(x_{0},\left(u, v^{*}\right)\right)$ and for all $\left(u, v^{*}\right) \notin D, P_{Z}\left(x_{0}\right) \notin H_{1}\left(x_{0},\left(u, v^{*}\right)\right)$
(2) Let $\gamma, \mu \in \mathbb{R}_{++}$. Operator $\eta: D \rightarrow \mathbb{R}$, defined as

$$
\begin{aligned}
\eta\left(u, v^{*}\right):= & \left\langle J_{\gamma A}\left(p-\gamma L^{*} v\right) \left\lvert\, \frac{1}{\gamma}\left(u-\gamma L^{*} v-J_{\gamma A}\left(u-\gamma L^{*} v\right)\right)\right.\right\rangle \\
& +\left\langle J_{\mu B}\left(L u+\mu v^{*}\right) \mid L^{*}\left(L u+\mu v^{*}\right)\right\rangle
\end{aligned}
$$

is Lipschitz continuous on D.
(3) Let $\gamma, \mu \in \mathbb{R}_{++}$. An operator s: $\mathcal{H} \times \mathcal{G} \rightarrow \mathcal{H} \times \mathcal{G}$ defined as

$$
s\left(u, v^{*}\right):=\left[\begin{array}{l}
\frac{1}{\gamma}\left(u-\gamma L^{*} v-J_{\gamma A}\left(u-\gamma L^{*} v\right)\right)+\frac{1}{\mu} L^{*}\left(L u+\mu v^{*}-J_{\mu B}\left(L u+\mu v^{*}\right)\right) \\
J_{\mu B}\left(L u+\mu v^{*}\right)-L J_{\gamma A}\left(u-\gamma L^{*} v\right)
\end{array}\right]
$$

is Lipschitz continuous on $\mathcal{H} \times \mathcal{G}$.
(4)

$$
\begin{aligned}
& H_{1}\left(x_{0},\left(u, v^{*}\right)\right) \cap H_{2}\left(u, v^{*}\right)= \\
& \left\{x \in \mathcal{H} \times \mathcal{G} \left\lvert\, \begin{array}{rl}
\left\langle x \mid x_{0}-\left(u, v^{*}\right)\right\rangle & \leq\left\langle\left(u, v^{*}\right) \mid x_{0}-\left(u, v^{*}\right)\right\rangle, \\
\left\langle x \mid s\left(u, v^{*}\right)\right\rangle & \leq \eta\left(u, v^{*}\right)
\end{array}\right.\right\}
\end{aligned}
$$

Optimization and Dynamical Systems

Dynamical systems and iterative solution schemes

(1) U. Helmke and J. Moore. Optimization and dynamical systems (1996), A. Taylor, B. Van Scoy, L. Lessard Lyapunov Functions for First-Order Methods: Tight Automated Convergence Guarantees (2015), J. Schropp and I. Singer. A dynamical systems approach to constrained minimization, (2000)
(2) R.I. Bot, E.R. Csetnek, A dynamical system associated with the fixed point set ofa nonexpansive operator (2018), A.S.Antipin, Minimization of convex functions on convex sets by means of differential equations (1996)
(3) B.Abbas, H. Attouch, Dynamical systems and forward-backward algorithms associated with the sumof a convex subdifferential and a monotone cocoercive operator (2014), B. Abbas h. Attouch B.F. Svaiter, Newton-like dynamics and forward-backward methods for structured monotone inclusions in hilbert spaces (2014), H. Attouch, M.-O. Czarnecki, Asymptotic behavior of coupled dynamical systems with multiscale aspects (2011)
(9) S. Boyd, W. Su, E.J. Candés, A Differential Equation for Modeling Nesterov's Accelerated Gradient Method; Theory and Insights (2014)

Modeling Nesterov's accelerated gradient method

(1) starting $x_{0}, y_{0}=x_{0}$

$$
x_{k}:=y_{k_{1}}-s \nabla f\left(y_{k-1}\right), \quad y_{k}:=x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right) .
$$

(2) combining the two with a rescaling we get

$$
\begin{equation*}
\frac{x_{k+1}-x_{k}}{\sqrt{s}}=\frac{x_{k+1}-x_{k}}{\sqrt{s}}-\sqrt{s} f\left(y_{k-1}\right) \tag{2}
\end{equation*}
$$

(3) $x_{k} \approx X(k \sqrt{s})$ for some smooth curve $X(t), t \geq 0$, we put $k=t / \sqrt{s}$
(0) as $s \rightarrow 0$, then $X(t) \approx x_{t / \sqrt{s}}=x_{k}$ and $X(t+\sqrt{s}) \approx x_{(t+\sqrt{s}) / \sqrt{s}}=x_{k+1}$
(-) by the Taylor expansion

$$
\frac{x_{k+1}-x_{k}}{\sqrt{s}}=\dot{X}(t)+\frac{1}{2} \ddot{X}(t) \sqrt{s}+o(\sqrt{s}), \frac{x_{k}-x_{k-1}}{\sqrt{s}}=\dot{X}(t)-\frac{1}{2} \ddot{X}(t) \sqrt{s}+o(\sqrt{s})
$$

(0) together with $\sqrt{s} \nabla f\left(y_{k}\right)=\sqrt{s} \nabla f(X(t))+o(\sqrt{s})$ the formula (2) gives

$$
\ddot{X}+\frac{3}{t} \dot{X}+\nabla f(X)=0
$$

with $X(0)=x_{0}, \dot{X}(0)=0$.

Projected Dynamical System

J.P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathematischen

Wissenschaften. Springer Berlin Heidelberg, 1984. ISBN: 9783540131052. URL: https://books.google.it/books?id=KDqXQgAACAAJ Paul Dupuis and Anna Nagurney. "Dynamical systems and variational inequalities". In: Annals of Operations Research 44.1 (1993), pp. 7-42. ISSN: 1572-9338. DOI: 10.1007/BF02073589. URL: https://doi.org/10.1007/BF02073589

Anna Nagurney and Ding Zhang. Projected Dynamical Systems and Variational Inequality with Applications. Vol. 2. Jan. 1996
M G. Cojocaru and L B. Jonker. "Existence of solutions to projected differential equations in Hilbert spaces". In: 132 (Jan. 2004)

Hedy Attouch and Felipe Alvarez. "The Heavy Ball With Friction Dynamical System for Convex Constrained Minimization Problems".
In: (Feb. 2001)
Radu loan Boţ and Ernö Robert Csetnek. "Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions". In: J. Math. Anal. Appl. 457.2 (2018), pp. 1135-1152. ISSN: 0022-247X. DOI: 10.1016/j.jmaa.2016.07.007. URL:
https://doi.org/10.1016/j.jmaa.2016.07.007
Weijie Su, Stephen Boyd, and Emmanuel J. Candès. "A differential equation for modeling Nesterov's accelerated gradient method: theory and insights". In: J. Mach. Learn. Res. 17 (2016), Paper No. 153, 43. ISSN: 1532-4435

Projected Dynamical System and Differential Variational Inclusion

The differential projection of the vector h at $x \in D \subset \mathcal{H} \times \mathcal{G}$ with respect to the set D

$$
\Pi_{K}(x, h)=\lim _{\Delta t \rightarrow 0} \frac{P_{D}(x+\Delta t h)-x}{\Delta t} .
$$

A projected dynamical system (PDS) takes the form

$$
\begin{align*}
& \dot{x}(t)=\Pi_{D}(x(t), F(x(t)))=F(x(t)), \quad \text { for a.a } t \geq 0, \tag{PDS}\\
& x(0)=x_{0} \in D,
\end{align*}
$$

where D - bounded closed convex set, $F: D \rightarrow \mathcal{H} \times \mathcal{G}$ - vector field defined as

$$
F(x(t)):=P_{H_{1}\left(x_{0}, x(t)\right) \cap H_{2}(x(t))}\left(x_{0}\right)-x(t) .
$$

(PDS) is a particular case of a differential variational inclusion (DVI) given as follows

$$
\begin{align*}
& \dot{x}(t) \in F(x(t))-N_{D}(x(t)), \quad \text { for a.a } t \geq 0, \\
& x(0)=x_{0} . \tag{DVI}
\end{align*}
$$

We are interested in finding an absolutely continuous function $x: \mathbb{R}_{+} \rightarrow D$ satisfying (PDS). ${ }^{1}$

[^0]
Discretization of (PDS) - relation to Best Approximation Algorithm

Discretization of (PDS) with respect to time variable t and step size $1 \geq h_{n}>0$

$$
\begin{equation*}
\frac{x_{n+1}-x_{n}}{h_{n}}=P_{H_{1}\left(x_{0}, x_{n}\right) \cap H_{2}\left(x_{n}\right)}\left(x_{0}\right)-x_{n} . \tag{3}
\end{equation*}
$$

Taking stepsizes $h_{n}=1$ gives

$$
\begin{equation*}
x_{n+1}=P_{H_{1}\left(x_{0}, x_{n}\right) \cap H_{2}\left(x_{n}\right)}\left(x_{0}\right) . \tag{4}
\end{equation*}
$$

This shows that the best approximation sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ satisfies the discretized (PDS) .

Existence results for PDS

Theorem (Cojocaru, Jonker)

Let $F: D \rightarrow \mathcal{H} \times \mathcal{G}$ be a Lipschitz continuous vector field with Lipschitz constant b. Let $x_{0} \in D$ and $r>0$ such that $\|x\| \leq r$. Then the initial value problem $\frac{d x(t)}{d t}=\Pi_{D}(x(t) ; F(x(t))), x(0)=x_{0} \in D$ has a unique solution on the interval $[0, \ell]$, where $\ell:=\frac{r}{\left\|F\left(x_{0}\right)\right\|+b L}$.

```
Monica-Gabriela Cojocaru and Leo B. Jonker. "Existence of solutions to projected differential equations in Hilbert spaces". In: Proc.
Amer. Math. Soc. 132.1 (2004), pp. 183-193. ISSN: 0002-9939. DOI: 10.1090/S0002-9939-03-07015-1. URL:
https://doi.org/10.1090/S0002-9939-03-07015-1
```


Theorem (Cojocaru)

Under assumptions of the above Theorem for the initial value problem $\frac{d x(t)}{d t}=\Pi_{K}(x(t) ; F(x(t))), x(0)=x_{0} \in D$ the solutions can be extended to $[0,+\infty)$

Monica Gabriela Cojocaru. Projected dynamical systems on Hilbert spaces. Thesis (Ph.D.)-Queen's University (Canada). ProQuest LLC, Ann Arbor, MI, 2002, p. 89. ISBN: 978-0612-73289-6

Problem: Lipschitzness of projection $G(x(t))=P_{H_{1}\left(x_{0}, x(t)\right) \cap H_{2}(x(t))}\left(x_{0}\right)$.

Lipschitzness of projection onto moving polyhedral sets

Let \mathcal{X} be a Hilbert space and $D \subset \mathcal{X}$. Let $H: D \rightrightarrows \mathcal{X}$ set-valued mapping given as

$$
H(p):=\left\{x \in \mathcal{X} \left\lvert\, \begin{array}{lll}
\begin{array}{l}
\left\langle x \mid g_{i}(p)\right\rangle \\
\left\langle x \mid g_{i}(p)\right\rangle
\end{array} & \leq f_{i}(p), & i \in I_{1} \\
f_{i}(p), & i \in I_{2}
\end{array}\right.\right\}, H(p) \neq \emptyset, p \in D,
$$

where $f_{i}(p): D \rightarrow \mathbb{R}, g_{i}(p): D \rightarrow \mathcal{X}, i \in I_{1} \cup I_{2}$ are Lipschitz functions.
Let $x_{0} \in D$. For $p \in D$ the function $G(p)=P_{H(p)}\left(x_{0}\right)$ is well defined.
Finding $P_{H(p)}\left(x_{0}\right)$ is equivalent to find $y \in H(p)$ solving variational inequality

$$
\begin{equation*}
\left\langle x_{0}-y \mid x-y\right\rangle \leq 0 \quad \text { for all } x \in H(p) . \tag{VI}
\end{equation*}
$$

Let

$$
P\left(x_{0}, p\right):=\left\{x \in \mathcal{X} \mid x_{0} \in x+\partial_{x} h(x, p)\right\},
$$

where stands $\partial_{x} h(x, p)$ for the partial limiting subdifferential of h with respect to x. If $h(x, p)=\iota_{H(p)}(x)$, where ι is the indicator function of $H(p)$, then

$$
P\left(x_{0}, p\right)=P_{H(p)}\left(x_{0}\right)=\left(N_{H(p)}+I\right)^{-1}\left(x_{0}\right),
$$

where $N_{H(p)}$ is the normal cone to $H(p)$. The case where

$$
H(p):=\left\{x \in \mathbb{R}^{n} \mid\left\langle x \mid g_{i}\right\rangle \leq f_{i}(p), \quad i \in I_{2}\right\}, H(p) \neq \emptyset, p \in D
$$

was investigated e.g. in
N. D. Yen. "Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint". In: Mathematics of

General parametric variational system

General parametric variational system of finding $x \in \mathcal{X}$

$$
v \in f(x, p, q)+\partial_{x} h(x, p), \quad \text { for } p \in \mathcal{P}, q \in \mathcal{Q}, v \in \mathcal{X}
$$

p, q - parameters, $\partial_{x} h$ stands for the partial limiting subdifferential of the function h with respect to variable x. For $h(x, p)=\iota_{H(p)}(x)$ and $f(x, p, q)=x, v=x_{0}$.

Theorem (Mordukhovich, Nghia, Pham)

Let $\bar{p} \in D$ and hypotheses (A2) and (A3) of paper [1] be satisfied. The following are equivalent:
(i) There exists a neighbourhood V of x_{0} a neighbourhood U of \bar{p} such that

$$
\left\|\left(v_{1}-v_{2}\right)-2 \kappa_{0}\left(P_{H\left(p_{1}\right)}\left(v_{1}\right)-P_{H\left(p_{2}\right)}\left(v_{2}\right)\right)\right\| \leq\left\|v_{1}-v_{2}\right\|+\ell_{0}\left\|p_{1}-p_{2}\right\|
$$

holds for all $\left(v_{1}, p_{1}\right),\left(v_{2}, p_{2}\right) \in V \times U$ with some positive constants κ_{0} and ℓ_{0}.
(ii) Graphical subdifferential mapping

$$
R: p \rightarrow \operatorname{gph} N_{H(p)}(\cdot)
$$

is Lipschitz-like around $\left(\bar{p}, H(\bar{p}), x_{0}-H(\bar{p})\right)$, where $N_{H(p)}(x)$ is the normal cone to $H(p)$ at $x \in H(p)$.
[1] B. S. Mordukhovich, T. T. A. Nghia, and D. T. Pham. "Full Stability of General Parametric Variational Systems". In: Set-Valued and Variational Analysis (2018). ISSN: 1877-0541. DOI: $10.1007 / \mathrm{s} 11228-018-0474-7$

Relaxed constant rank constraint qualification (RCRCQ)

For any $(p, x) \in D \times \mathcal{H}$ let $I_{p}(x):=\left\{i \in I_{1} \cup I_{2} \mid\left\langle x \mid g_{i}(p)\right\rangle=f_{i}(p)\right\}$ be the active index set for $p \in D$ at $x \in \mathcal{H}$.

Definition

The Relaxed constant rank constraint qualification (RCRCQ) is satisfied in (\bar{x}, \bar{p}), $\bar{x} \in H(\bar{p})$, if there exists a neighbourhood $U(\bar{p})$ of \bar{p} such that, for any index set J, $I_{1} \subset J \subset I_{\bar{p}}(\bar{x})$, for every $p \in U(\bar{p})$ the system of vectors $\left\{g_{i}(p), i \in J\right\}$ has constant rank. Precisely, for any $J, \iota_{1} \subset J \subset I_{\bar{p}}(\bar{x})$

$$
\operatorname{rank}\left(g_{i}(p,), i \in J\right)=\operatorname{rank}\left(g_{i}(\bar{p}), i \in J\right) \quad \text { for all } p \in U(\bar{p})
$$

L. Minchenko and S. Stakhovski. "Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition". In: SIAM

Journal on Optimization 21.1 (2011), pp. 314-332. DoI: 10.1137/090761318. eprint: https://doi.org/10.1137/090761318. URL:
https://doi.org/10.1137/090761318
This definition has been introduced in finite dimensional case by Minchenko and Stakhovski for more general set-valued mappings

$$
H(p):=\left\{x \in \mathcal{X} \left\lvert\, \begin{array}{ll}
\xi_{i}(p, x)=0, & i \in I_{1} \\
\xi_{i}(p, x) \leq 0, & i \in I_{2}
\end{array}\right.\right\}
$$

where $\xi_{i}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, i \in I_{1} \cup I_{2}$ are continuously differentiable functions with respect to variable x. Non-parametric versions of constant rank qualifications has been studied by Kruger and Minchenko and Outrata, Andreani and Haeser and Schuverdt and Silva.

R-regularity of a set-valued mapping

Let $\mathbb{C}: D \rightrightarrows \mathcal{H}$ be a multifunction defined as $\mathbb{C}(p):=C(p)$, where

$$
C(p)=\left\{\begin{array}{l|l}
x \in \mathcal{H} & \begin{array}{l}
\left\langle x \mid g_{i}(p)\right\rangle=f_{i}(p), \\
\left\langle x \mid g_{i}(p)\right\rangle \leq f_{i}(p), \\
\\
i \in I_{2}
\end{array} \tag{5}
\end{array}\right\},
$$

and $f_{i}: D \rightarrow \mathbb{R}, g_{i}: D \rightarrow \mathcal{H}, i \in I_{1} \cup I_{2}, I_{1}=\{1, \ldots, m\}, I_{2}=\{m+1, \ldots, n\}$ are Lipschitz on D with Lipschitz constants $\ell_{f_{i}}, \ell_{g_{i}}$, respectively.

Definition

Multifunction $\mathbb{C}: D \rightrightarrows \mathcal{H}$ given by (5) is said to be R-regular at a point (\bar{p}, \bar{x}), if for all (p, x) in a neighbourhood of ($\bar{p}, \bar{x})$,

$$
\operatorname{dist}(x, \mathbb{C}(p)) \leq \alpha \max \left\{0,\left|\left\langle x \mid g_{i}(p)\right\rangle-f_{i}(p)\right|, i \in I_{1},\left\langle x \mid g_{i}(p)\right\rangle-f_{i}(p), i \in I_{2}\right\}
$$

for some $\alpha>0$.

Theorem

Let \mathcal{H}, \mathcal{G} be a Hilbert spaces and $f_{i}: D \rightarrow \mathbb{R}, g_{i}: t D \rightarrow \mathcal{H}$ are Lipschitz on $D \subset \mathcal{G}$. If the set-valued mapping $\mathbb{C}: D \rightrightarrows \mathcal{H}$ given by (5) is R-regular at $(\bar{p}, \bar{x}), \bar{p} \in D$, $\bar{x} \in C(\bar{p})$ then \mathbb{C} is Lipschitz-like at (\bar{p}, \bar{x})

Lipschitz likeness of the graphical subdifferential mapping

Let $\bar{p} \in D$. The lower Kuratowski limit is defined as

$$
\liminf _{p \rightarrow \bar{p}} H(\bar{p}):=\left\{x \in \mathcal{X} \mid \forall p_{k} \rightarrow \bar{p} \exists x_{k} \in H\left(p_{k}\right) \quad \text { s.t. } x_{k} \rightarrow x\right\}
$$

and $G(\bar{p})=P_{H(\bar{p})}\left(x_{0}\right)$.

Theorem (Main result 1)

Let \mathcal{X} be a Hilbert space, $\bar{p} \in D \subset \mathcal{H}$ and

$$
H(p):=\left\{x \in \mathcal{X} \left\lvert\, \begin{array}{lll}
\left\langle x \mid g_{i}(p)\right\rangle & = & f_{i}(p), \\
\left\langle x \mid g_{i}(p)\right\rangle & \leq & i \in I_{1} \\
f_{i}(p), & i \in I_{2}
\end{array}\right.\right\},
$$

where $f_{i}(p): D \rightarrow \mathbb{R}, g_{i}(p): D \rightarrow \mathcal{X}$ are Lipschitz functions. Suppose that $x_{0} \notin H(\bar{p}), G(\bar{p}) \in \liminf _{p \rightarrow \bar{p}} H(p)$ and $R C R C Q$ holds at $(G(\bar{p}), \bar{p})$. Then the graphical subdifferential mapping

$$
R: p \rightarrow g p h N_{H(p)}(\cdot)
$$

is Lipschitz-like around ($\bar{p}, G(\bar{p}), x_{0}-G(\bar{p})$)

Remark

Under the assumption of RCRCQ hypotheses (A2) and (A3) of Theorem Mordukhovich, Nghia, Pham hold.

Lipschitzness of the projection

Consequence of main theorem 1 and theorem of Mordukhovich, Nghia, Pham

Theorem (Main result 2)

Let \mathcal{X} be a Hilbert space and $\bar{p} \in D \subset \mathcal{X}$. Assume that $R C R C Q$ holds at $(G(\bar{p}), \bar{p})$ and $G(\bar{x}) \in \liminf _{p \rightarrow \bar{p}} H(p)$. Then there exists a neighbourhood U of \bar{p} and a constant $\ell_{0}>0$ such that

$$
\left\|G\left(p_{1}\right)-G\left(p_{2}\right)\right\| \leq \ell_{0}\left\|p_{1}-p_{2}\right\|, \quad\left(p_{1}, p_{2}\right) \in U
$$

Consequence for the vector field related to proximal primal-dual dynamical system

Consequence for the vector field related to proximal primal-dual dynamical system
Let $I_{1}=\emptyset, I_{2}=\{1,2\}, \overline{\boldsymbol{z}}=P_{Z}\left(x_{0}\right)$. Let $x_{0} \in \mathcal{H} \times \mathcal{G}, \bar{p} \in D \backslash\left\{x_{0}, P_{Z}\left(x_{0}\right)\right\}$ and

$$
\begin{aligned}
& G(p):=G\left(u, v^{*}\right):=H_{1}\left(x_{0},\left(u, v^{*}\right)\right) \cap H_{2}\left(u, v^{*}\right)= \\
& \left\{\begin{array}{ll}
x \in \mathcal{H} \times \mathcal{G} \left\lvert\, \begin{array}{rl}
\left\langle x \mid x_{0}-\left(u, v^{*}\right)\right\rangle & \leq\left\langle\left(u, v^{*}\right) \mid x_{0}-\left(u, v^{*}\right)\right\rangle, \\
\left\langle x \mid s\left(u, v^{*}\right)\right\rangle & \leq \eta\left(u, v^{*}\right)
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

Let $g_{1}(p):=g_{1}\left(u, v^{*}\right):=x_{0}-\left(u, v^{*}\right), g_{2}(p):=g_{2}\left(u, v^{*}\right):=s\left(u, v^{*}\right)$. Then $g_{i}(\bar{p})$, $i \in I_{\bar{p}}(H(\bar{p}))$ are linearly independent and moreover set-valued mapping H satisfies RCRCQ at ($H(\bar{p}), \bar{p})$.

Remark

Let us note that $g_{1}\left(x_{0}\right)=g_{1}\left(u_{0}, v_{0}^{*}\right)=0$ and $g_{2}\left(P_{Z}\left(x_{0}\right)\right)=g_{2}\left(\bar{u}, \bar{v}^{*}\right)=s\left(\bar{u}, \bar{v}^{*}\right)=0$ and at points $x_{0}, P_{Z}\left(x_{0}\right) R C R C Q$ does not hold.

$$
\begin{aligned}
y_{1}^{n}:= & x_{0}+\varepsilon_{n} \frac{P_{Z}\left(x_{0}\right)-x_{0}}{\left\|P_{Z}\left(x_{0}\right)-x_{0}\right\|}, \\
y_{2}^{n}:= & P_{Z}\left(x_{0}\right)+\varepsilon_{n} \frac{x_{0}-P_{Z}\left(x_{0}\right)}{\left\|x_{0} P_{Z}\left(x_{0}\right)\right\|}, \\
& \varepsilon_{n}>0, \quad D_{n}:=D \cap H_{1}\left(y_{1}^{n}, x_{0}\right) \cap H_{1}\left(y_{2}^{n}, P_{Z}\left(x_{0}\right)\right) .
\end{aligned}
$$

Consequences

Let $\mathcal{H} \times \mathcal{G}$ be finite-diminensional Hilbert space. Let $\varepsilon_{n}=\frac{1}{n}$ and $D_{n} \subset D \subset \mathcal{H} \times \mathcal{G}$ be defined as before. Then $D=\overline{\bigcup_{n} D_{n}}$ and for any $n \in \mathbb{N}, F$ is Lipschitz continuous on D_{n}. Hence projected dynamical system

$$
\begin{align*}
& \dot{x}(t)=\Pi_{D_{n}}(x(t), F(x(t))), \quad \text { for a.a } t \geq 0, \\
& x(0)=x_{0, n}, \quad x(t) \in D_{n} \quad \text { for a.a } t \geq 0 \tag{n}
\end{align*}
$$

is uniquely solvable for each n and the solution $x(t)$ of $\left(B A-P D S_{n}\right)$ is absolutely continuous.

[^1]Thank you for your attention!

[^0]: ${ }^{1}$ (PDS) consists in finding the slow solution (solution of the minimal norm) of (DVI).
 J. Gwinner. "On differential variational inequalities and projected dynamical systems-equivalence and a stability result". In: Discrete Contin. Dyn. Syst. Dynamical systems and differential equations. Proceedings of the 6 th AIMS International Conference, suppl. (2007), pp. 467-476. ISSN: 1078-0947

[^1]: J. Gwinner. "On differential variational inequalities and projected dynamical systems-equivalence and a stability result". In: Discrete

 Contin. Dyn. Syst. Dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference, suppl. (2007), pp. 467-476. ISSN: 1078-0947

