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Operator inclusions problem

Let H,G be Hilbert spaces, A : H → H, B : G → G be maximally monotone
operators and L : H → G be a linear, bounded continuous operator. We are
interested in finding a point u ∈ H which solves the following inclusion problem

0 ∈ Au + L∗BLu. (P)

The dual inclusion problem to (5) is to find v∗ ∈ G such that

0 ∈ −LA−1(−Lv∗) + B−1v∗. (D)

A point u ∈ H solves (5) if and only if v∗ ∈ G solves (D) and (u, v∗) ∈ Z , where

Z := {(u, v∗) ∈ H× G | − L∗v∗ ∈ Au and Lu ∈ B−1v∗}.

Z is a closed convex set. We assume that Z is nonempty.
The aim is to find a point from Z .
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The approach

The idea of Eckstein and Svaiter is to construct halfspaces satisfying

Z ⊂ Hϕ := {(u, v∗) ∈ H×H | ϕ(u, v∗) ≤ 0}

(in their original formulation L = Id), with

ϕ(u, v∗) := 〈u − b | b∗ − v∗〉+ 〈u − a | a∗ + v∗〉, (a, a∗) ∈ gphA, (b, b∗) ∈ gphB.

This idea has been continued by Zhang and Cheng, Alatoibi and Combettes and
Shahzad.
J. Eckstein and B. F. Svaiter. “A family of projective splitting methods for the sum of two maximal monotone operators”. In:

Mathematical Programming 111.1 (2008), pp. 173–199. issn: 1436-4646. doi: 10.1007/s10107-006-0070-8. url:

http://dx.doi.org/10.1007/s10107-006-0070-8

Hui Zhang and Lizhi Cheng. “Projective splitting methods for sums of maximal monotone operators with applications”. In: Journal of

Mathematical Analysis and Applications 406.1 (2013), pp. 323 –334. issn: 0022-247X. doi:

https://doi.org/10.1016/j.jmaa.2013.04.072
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Relation to convex optimization problems

A = ∂f , B = ∂g - subdifferentials of convex functions f and g ,
f : H →]−∞,+∞] g : G →]−∞,+∞], proper, l.s.c.

under some constraint qualification our problem corresponds to the
minimization

minimizex∈H f (x) + g(Lx)

the Fenchel-Rockafellar dual problem

minimizev∗∈G f ∗(−L∗v∗) + g∗(v∗)

and the associated Kuhn–Tucker set is the set Z coincides with (3)

Z = {(x , v∗) ∈ H× G | − L∗v∗ ∈ ∂f (x) and Lx ∈ ∂g∗(v∗)}

the set Z is a natural extension of the Kuhn-Tucker set

5 / 33



Problem statement Best approximation algorithm Optimization and Dynamical Systems Projected Dynamical System Lipschitzness of projection onto moving polyhedral sets

Inspiration - Eckstein and Svaiter, 2007 - decomposable separator

1 original problem: 0 ∈ Ax + Bx (no L and H = G)

2 extended solution set

Se(A,B) = {(x , v∗) ∈ H×H | − v∗ ∈ Ax and v∗ ∈ Bx}

3 this is the Kuhn-Tucker set Z

4 Fact 1: x ∈ (A + B)−1(0) ⇔ ∃ v∗ ∈ H s.t. (x , v∗) ∈ Se(A,B)

proof: 0 ∈ Ax + Bx ≡ ∃ v∗ ∈ H − v∗ ∈ Ax and v∗ ∈ Bx

5 Fact 2: A,B : H⇒ H, then Se(A,B) is closed and convex

6 Let (b, b∗) ∈ GphB and (a, a∗) ∈ GphA and let ϕ : H×H → R

ϕ(x , v∗) := 〈x − b, b∗ − v∗〉+ 〈x − a, a∗ + v∗〉

7 Fact 3. Given (b, b∗) ∈ GphB and (a, a∗) ∈ GphA. We have
1 Se(A,B) ⊂ {(x, v∗) ∈ H×H | ϕ(x, v∗) ≤ 0}
2 additionally: ϕ is both continuous and affine,

∇ϕ = 0 ⇔ (b, b∗) ∈ Se(A,B), b = a, a∗ = −b∗
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Inspiration - Eckstein and Svaiter, 2007 - the resulting algorithm

1: for k = 0, 1, . . . do, start with arbitrary p0 = (x0, v∗0 ) ∈ H×H
2: Choose (bk , b

∗
k ) ∈ GphB, (ak , a

∗
k ) ∈ GphA

3: Define
ϕk (x , v∗) := 〈x − bk , b

∗
k − v∗〉+ 〈x − ak , a

∗
k + v∗〉

4: Compute p̄k = (x̄k , v̄
∗
k ) to be the projection of pk = (xk , v

∗
k ) onto

Hk := {(x , v∗) ∈ H×H | ϕk (x , v∗) ≤ 0}

5: Choose a relaxation parameter ρk ∈ (0, 2) and let

pk+1 := pk + ρk (p̄k − pk )

6: end for

Rezolvent of subdifferential Jλ∂f

1 λ > 0,z = Jλ∂f (x) = (I + λ∂f )−1(x), i.e. x ∈ z + λ∂f (z)

2 can be rewritten: 0 ∈ ∂z (f (z) + 1
2
λ‖z − x‖2

2)

3 which is the same as: z = argminu(f (u) + 1
2
λ‖u − x‖2

2) = Proxλf (x) = Jλ∂f (x)
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Successive Fejér approximations iterative scheme

Let {Hn}n∈N ⊂ H×G, be a sequence of convex closed sets such that Z ⊂ Hn, n ∈ N.
The projections of any x ∈ H× G onto Hn are uniquely defined.

Algorithm 1 Generic primal-dual Fejér Approximation Iterative Scheme

1: Choose an initial point x0 ∈ H× G
2: Choose a sequence of parameters {λn}n≥0 ∈ (0, 2)
3: for n = 0, 1 . . . do
4: xn+1 = xn + λn(PHn (xn)− xn)
5: end for
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Convergence result

Theorem

For any sequence generated by Iterative Scheme 1 the following hold:

1 {xn}n∈N ⊂ H× G is Fejér monotone with respect to the set Z, i.e

∀n∈N ∀z∈Z ‖xn+1 − z‖ ≤ ‖xn − z‖,

2

+∞∑
n=0

λn(2− λn)‖PHn (xn)− xn‖2 < +∞,

3 if
∀x ∈ H× G ∀{kn}n∈N ⊂ N xkn ⇀ x =⇒ x ∈ Z ,

then {xn}n∈N converges weakly to a point in Z.

Han,b∗n :=
{
x ∈ H× G |

〈
x | s∗an,b∗n

〉
≤ ηan,b∗n

}
,

s∗an,b∗n
:= (a∗n + L∗b∗n , bn − Lan), ηan,b∗n := 〈an | a∗n 〉+ 〈bn | b∗n 〉 ,

(1)

with

an := JγnA(pn − γnL∗v∗n ), bn := JµnB(Lpn + µnv
∗
n ),

a∗n := γ−1
n (pn − an)− L∗v∗n , b∗n := µ−1

n (Lpn − bn) + v∗n ,

It easy to see Hϕn = Han,b∗n , where ϕn = ϕ(an, b∗n ).
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Best approximation iterative schemes

For any x , y ∈ H× G we define

H(x , y) := {h ∈ H× G | 〈h − y | x − y〉 ≤ 0}.

As previously, let {Hn}n∈N ⊂ H× G be a sequence of closed convex sets, Z ⊂ Hn for
n ∈ N.

Algorithm 2 Generic primal-dual best approximation iterative scheme

Choose an initial point x0 = (p0, v∗0 ) ∈ H× G
Choose a sequence of parameters {λn}n≥0 ∈ (0, 1]
for n = 0, 1 . . . do

Fejérian step
xn+1/2 = xn + λn(PHn (xn)− xn)
Let Cn be a closed convex set such that Z ⊂ Cn ⊂ H(xn, xn+1/2).
Haugazeau step
xn+1 = PH(x0,xn)∩Cn

(x0)
end for

The choice of Cn = H(xn, xn+1/2) has been already investigated in [1].
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Convergence

Theorem

Let Z be a nonempty closed convex subset of H × G and let x0 = (p0, v∗0 ) ∈ H× G.
Let {Cn}n∈N be any sequence satisfying Z ⊂ Cn ⊂ H(xn, xn+1/2), n ∈ N. For the
sequence {xn}n∈N generated by Iterative Scheme 2 the following hold:

1 Z ⊂ H(x0, xn) ∩ Cn for n ∈ N,

2 ‖xn+1 − x0‖ ≥ ‖xn − x0‖ for n ∈ N,

3

+∞∑
n=0
‖xn+1 − xn‖2 < +∞,

4

+∞∑
n=0
‖xn+1/2 − xn‖2 < +∞.

5 If
∀x ∈ H × G ∀{kn}n∈N ⊂ N xkn ⇀ x =⇒ x ∈ Z ,

then xn → PZ (x0).
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Best approximation algorithm

Yves. Haugazeau. “Sur les inequations variationnelles et la minimisation de fonctionnelles convexes”. French. PhD thesis. [S.l.]: [s.n.],

1968

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in

Mathematics/Ouvrages de Mathématiques de la SMC. With a foreword by Hédy Attouch. Springer, New York, 2011, pp. xvi+468. isbn:

978-1-4419-9466-0. doi: 10.1007/978-1-4419-9467-7. url: http://dx.doi.org/10.1007/978-1-4419-9467-7

Abdullah Alotaibi, Patrick L. Combettes, and Naseer Shahzad. “Best approximation from the Kuhn-Tucker set of composite monotone

inclusions”. In: Numer. Funct. Anal. Optim. 36.12 (2015), pp. 1513–1532. issn: 0163-0563. doi: 10.1080/01630563.2015.1077864.

url: http://dx.doi.org/10.1080/01630563.2015.1077864
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Generic best approximation algorithm

Let x0 = (u0, v∗0 ) ∈ H× G.

1: for n = 0, 1, . . . do
2: (un+1, v∗n+1) = PH1(x0,(un,v∗n ))∩H2(un,v∗n )(x0)
3: end for

where

H1(x0, (u, v
∗)) :={h ∈ H× G | 〈h − (u, v∗) | x0 − (u, v∗)〉 ≤ 0},

H2(u, v∗) :={h ∈ H× G | 〈h | g(u, v∗)〉 ≤ f (u, v∗)}, Z ⊂ H2(u, v∗),

g : H× G → H× G, f : H× G → R

for suitably chosen f and g .

Z ⊂ H1(x0, (un, v
∗
n )) ∩ H2(un, v

∗
n ) =⇒ Z ⊂ H1(x0, (un+1, v

∗
n+1)), n ∈ N
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Special case with resolvents

Let x0 = (u0, v∗0 ) ∈ H× G.

1: for n = 0, 1, . . . do
2: Pick (γn, µn) ∈ [ε, 1/ε]2

3: a(un, v∗n ) = JγnA(un − γnL∗v∗n ), a∗(un, v∗n ) = 1
γn

(un − γnL∗v∗n − a(un, v∗n ))

4: b(un, v∗n ) = JµnB(Lun + µnv∗n ), b∗(un, v∗n ) = 1
µn

(Lun + µnv∗n − b(un, v∗n ))

5: if s(un, v∗n ) = 0 then
6: ū = an, v̄∗ = b∗n , (ū, v̄∗) ∈ Z
7: terminate
8: else
9: (un+1, v∗n+1) = PH1(x0,(un,v∗n ))∩H2(un,v∗n )(u0, v∗0 )

10: end if
11: end for

where s(un, v
∗
n ) :=

[
a∗(un, v∗n ) + L∗b∗(un, v∗n )
b(un, v∗n )− La(un, v∗n )

]
,

η(un, v
∗
n ) :=〈a(un, v

∗
n ) | a∗(un, v∗n )〉+ 〈b(un, v

∗
n ) | b∗(un, v∗n )〉,

H2(un, v
∗
n ) :={h ∈ H× G | 〈h | s(un, v

∗
n )〉 ≤ η(un, v

∗
n )}.

Theorem (Alatoibi, Combettes, Shahzad, 2015)

(un)n∈N converges strongly to a point ū, (vn)n∈N converges strongly to a point v̄∗ and
(ū, v̄∗) = PZ (x0).
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Lipschitzness of data

1 Let (u, v∗) ∈ D := clB( x0+PZ (x0)
2

,
‖x0−PZ (x0)‖

2
). Then PZ (x0) ∈ H1(x0, (u, v∗))

and for all (u, v∗) /∈ D, PZ (x0) /∈ H1(x0, (u, v∗))

2 Let γ, µ ∈ R++. Operator η : D → R, defined as

η(u, v∗) :=〈JγA(p − γL∗v) |
1

γ
(u − γL∗v − JγA(u − γL∗v))〉

+ 〈JµB(Lu + µv∗) | L∗(Lu + µv∗)〉

is Lipschitz continuous on D.

3 Let γ, µ ∈ R++. An operator s : H× G → H× G defined as

s(u, v∗) :=

[ 1
γ

(u − γL∗v − JγA(u − γL∗v)) + 1
µ
L∗(Lu + µv∗ − JµB(Lu + µv∗))

JµB(Lu + µv∗)− LJγA(u − γL∗v)

]
is Lipschitz continuous on H× G.

4 H1(x0, (u, v
∗)) ∩ H2(u, v∗) ={

x ∈ H× G
∣∣∣∣ 〈x | x0 − (u, v∗)〉 ≤ 〈(u, v∗) | x0 − (u, v∗)〉,

〈x | s(u, v∗)〉 ≤ η(u, v∗)

}
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Optimization and Dynamical Systems
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Dynamical systems and iterative solution schemes

1 U. Helmke and J. Moore. Optimization and dynamical systems (1996),A. Taylor,
B. Van Scoy, L. Lessard Lyapunov Functions for First-Order Methods: Tight
Automated Convergence Guarantees (2015), J. Schropp and I. Singer. A
dynamical systems approach to constrained minimization, (2000)

2 R.I. Bot, E.R. Csetnek, A dynamical system associated with the fixed point set
ofa nonexpansive operator (2018), A.S.Antipin, Minimization of convex functions
on convex sets by means of differential equations (1996)

3 B.Abbas, H. Attouch, Dynamical systems and forward-backward algorithms
associated with the sumof a convex subdifferential and a monotone cocoercive
operator (2014), B. Abbas h. Attouch B.F. Svaiter, Newton-like dynamics and
forward-backward methods for structured monotone inclusions in hilbert spaces
(2014), H. Attouch, M.-O. Czarnecki, Asymptotic behavior of coupled dynamical
systems with multiscale aspects (2011)

4 S. Boyd, W. Su, E.J. Candés, A Differential Equation for Modeling Nesterov’s
Accelerated Gradient Method; Theory and Insights (2014)
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Modeling Nesterov’s accelerated gradient method

1 starting x0, y0 = x0

xk := yk1
− s∇f (yk−1), yk := xk +

k − 1

k + 2
(xk − xk−1).

2 combining the two with a rescaling we get

xk+1 − xk√
s

=
xk+1 − xk√

s
−
√
sf (yk−1) (2)

3 xk ≈ X (k
√
s) for some smooth curve X (t), t ≥ 0, we put k = t/

√
s

4 as s → 0, then X (t) ≈ xt/
√

s = xk and X (t +
√
s) ≈ x(t+

√
s)/
√
s = xk+1

5 by the Taylor expansion

xk+1 − xk√
s

= Ẋ (t) +
1

2
Ẍ (t)
√
s +o(

√
s),

xk − xk−1√
s

= Ẋ (t)−
1

2
Ẍ (t)
√
s +o(

√
s)

6 together with
√
s∇f (yk ) =

√
s∇f (X (t)) + o(

√
s) the formula (2) gives

Ẍ +
3

t
Ẋ +∇f (X ) = 0

with X (0) = x0, Ẋ (0) = 0.
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Projected Dynamical System

J.P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathematischen

Wissenschaften. Springer Berlin Heidelberg, 1984. isbn: 9783540131052. url: https://books.google.it/books?id=KDqXQgAACAAJ

Paul Dupuis and Anna Nagurney. “Dynamical systems and variational inequalities”. In: Annals of Operations Research 44.1 (1993),

pp. 7–42. issn: 1572-9338. doi: 10.1007/BF02073589. url: https://doi.org/10.1007/BF02073589

Anna Nagurney and Ding Zhang. Projected Dynamical Systems and Variational Inequality with Applications. Vol. 2. Jan. 1996

M G. Cojocaru and L B. Jonker. “Existence of solutions to projected differential equations in Hilbert spaces”. In: 132 (Jan. 2004)

Hedy Attouch and Felipe Alvarez. “The Heavy Ball With Friction Dynamical System for Convex Constrained Minimization Problems”.

In: (Feb. 2001)

Radu Ioan Boţ and Ernö Robert Csetnek. “Convergence rates for forward-backward dynamical systems associated with strongly monotone

inclusions”. In: J. Math. Anal. Appl. 457.2 (2018), pp. 1135–1152. issn: 0022-247X. doi: 10.1016/j.jmaa.2016.07.007. url:

https://doi.org/10.1016/j.jmaa.2016.07.007

Weijie Su, Stephen Boyd, and Emmanuel J. Candès. “A differential equation for modeling Nesterov’s accelerated gradient method: theory

and insights”. In: J. Mach. Learn. Res. 17 (2016), Paper No. 153, 43. issn: 1532-4435
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Projected Dynamical System and Differential Variational Inclusion

The differential projection of the vector h at x ∈ D ⊂ H×G with respect to the set D

ΠK (x , h) = lim
∆t→0

PD(x + ∆th)− x

∆t
.

A projected dynamical system (PDS) takes the form

ẋ(t) = ΠD(x(t),F (x(t)))= F (x(t)), for a.a t ≥ 0,

x(0) = x0 ∈ D,
(PDS)

where D — bounded closed convex set, F : D →H× G — vector field defined as

F (x(t)) := PH1(x0,x(t))∩H2(x(t))(x0)− x(t).

(PDS) is a particular case of a differential variational inclusion (DVI) given as follows

ẋ(t) ∈ F (x(t))− ND(x(t)), for a.a t ≥ 0,

x(0) = x0.
(DVI)

We are interested in finding an absolutely continuous function x : R+ → D satisfying
(PDS).1

1(PDS) consists in finding the slow solution (solution of the minimal norm) of (DVI).
J. Gwinner. “On differential variational inequalities and projected dynamical systems—equivalence and a stability result”. In: Discrete

Contin. Dyn. Syst. Dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference, suppl. (2007),

pp. 467–476. issn: 1078-0947
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Discretization of (PDS) - relation to Best Approximation Algorithm

Discretization of (PDS) with respect to time variable t and step size 1 ≥ hn > 0

xn+1 − xn

hn
= PH1(x0,xn)∩H2(xn)(x0)− xn. (3)

Taking stepsizes hn = 1 gives

xn+1 = PH1(x0,xn)∩H2(xn)(x0). (4)

This shows that the best approximation sequence {xn}n∈N satisfies the discretized
(PDS) .
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Existence results for PDS

Theorem (Cojocaru, Jonker)

Let F : D →H× G be a Lipschitz continuous vector field with Lipschitz constant b.
Let x0 ∈ D and r > 0 such that ‖x‖ ≤ r . Then the initial value problem
dx(t)
dt

= ΠD(x(t);F (x(t))), x(0) = x0 ∈ D has a unique solution on the interval [0, `],
where ` := r

‖F (x0)‖+bL
.

Monica-Gabriela Cojocaru and Leo B. Jonker. “Existence of solutions to projected differential equations in Hilbert spaces”. In: Proc.

Amer. Math. Soc. 132.1 (2004), pp. 183–193. issn: 0002-9939. doi: 10.1090/S0002-9939-03-07015-1. url:

https://doi.org/10.1090/S0002-9939-03-07015-1

Theorem (Cojocaru)

Under assumptions of the above Theorem for the initial value problem
dx(t)
dt

= ΠK (x(t);F (x(t))), x(0) = x0 ∈ D the solutions can be extended to [0,+∞)

Monica Gabriela Cojocaru. Projected dynamical systems on Hilbert spaces. Thesis (Ph.D.)–Queen’s University (Canada). ProQuest LLC,

Ann Arbor, MI, 2002, p. 89. isbn: 978-0612-73289-6

Problem: Lipschitzness of projection G(x(t)) = PH1(x0,x(t))∩H2(x(t))(x0).
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Lipschitzness of projection onto moving polyhedral sets

Let X be a Hilbert space and D ⊂ X . Let H : D ⇒ X set-valued mapping given as

H(p) :=

{
x ∈ X | 〈x | gi (p)〉 = fi (p), i ∈ I1

〈x | gi (p)〉 ≤ fi (p), i ∈ I2

}
, H(p) 6= ∅, p ∈ D,

where fi (p) : D → R, gi (p) : D → X , i ∈ I1 ∪ I2 are Lipschitz functions.

Let x0 ∈ D. For p ∈ D the function G(p) = PH(p)(x0) is well defined.

Finding PH(p)(x0) is equivalent to find y ∈ H(p) solving variational inequality

〈x0 − y | x − y〉 ≤ 0 for all x ∈ H(p). (VI)

Let
P(x0, p) := {x ∈ X | x0 ∈ x + ∂xh(x , p)},

where stands ∂xh(x , p) for the partial limiting subdifferential of h with respect to x .
If h(x , p) = ιH(p)(x), where ι is the indicator function of H(p), then

P(x0, p) = PH(p)(x0) = (NH(p) + I )−1(x0),

where NH(p) is the normal cone to H(p). The case where

H(p) :=
{
x ∈ Rn | 〈x | gi 〉 ≤ fi (p), i ∈ I2

}
, H(p) 6= ∅, p ∈ D,

was investigated e.g. in
N. D. Yen. “Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint”. In: Mathematics of

Operations Research 20.3 (1995), pp. 695–708. issn: 0364765X, 15265471. url: http://www.jstor.org/stable/3690178
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General parametric variational system

General parametric variational system of finding x ∈ X

v ∈ f (x , p, q) + ∂xh(x , p), for p ∈ P, q ∈ Q, v ∈ X ,

p, q - parameters, ∂xh stands for the partial limiting subdifferential of the function h
with respect to variable x . For h(x , p) = ιH(p)(x) and f (x , p, q) = x , v = x0.

Theorem (Mordukhovich, Nghia, Pham)

Let p̄ ∈ D and hypotheses (A2) and (A3) of paper [1] be satisfied. The following are
equivalent:

(i) There exists a neighbourhood V of x0 a neighbourhood U of p̄ such that

‖(v1 − v2)− 2κ0(PH(p1)(v1)− PH(p2)(v2))‖ ≤ ‖v1 − v2‖+ `0‖p1 − p2‖

holds for all (v1, p1), (v2, p2) ∈ V × U with some positive constants κ0 and `0.

(ii) Graphical subdifferential mapping

R : p → gphNH(p)(·)

is Lipschitz-like around (p̄,H(p̄), x0 − H(p̄)), where NH(p)(x) is the normal cone
to H(p) at x ∈ H(p).

[1] B. S. Mordukhovich, T. T. A. Nghia, and D. T. Pham. “Full Stability of General Parametric Variational Systems”. In: Set-Valued

and Variational Analysis (2018). issn: 1877-0541. doi: 10.1007/s11228-018-0474-7
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Relaxed constant rank constraint qualification (RCRCQ)

For any (p, x) ∈ D ×H let Ip(x) := {i ∈ I1 ∪ I2 | 〈x | gi (p)〉 = fi (p)} be the active
index set for p ∈ D at x ∈ H.

Definition

The Relaxed constant rank constraint qualification (RCRCQ) is satisfied in (x̄ , p̄),
x̄ ∈ H(p̄), if there exists a neighbourhood U(p̄) of p̄ such that, for any index set J,
I1 ⊂ J ⊂ Ip̄(x̄), for every p ∈ U(p̄) the system of vectors {gi (p), i ∈ J} has constant
rank. Precisely, for any J, I1 ⊂ J ⊂ Ip̄(x̄)

rank(gi (p, ), i ∈ J) = rank(gi (p̄), i ∈ J) for all p ∈ U(p̄).

L. Minchenko and S. Stakhovski. “Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition”. In: SIAM

Journal on Optimization 21.1 (2011), pp. 314–332. doi: 10.1137/090761318. eprint: https://doi.org/10.1137/090761318. url:

https://doi.org/10.1137/090761318

This definition has been introduced in finite dimensional case by Minchenko and
Stakhovski for more general set-valued mappings

H(p) :=

{
x ∈ X | ξi (p, x) = 0, i ∈ I1

ξi (p, x) ≤ 0, i ∈ I2

}
,

where ξi : Rn × Rm → R, i ∈ I1 ∪ I2 are continuously differentiable functions with
respect to variable x . Non-parametric versions of constant rank qualifications has been
studied by Kruger and Minchenko and Outrata, Andreani and Haeser and Schuverdt
and Silva.
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R-regularity of a set-valued mapping

Let C : D ⇒ H be a multifunction defined as C(p) := C(p), where

C(p) =

{
x ∈ H

∣∣∣∣ 〈x | gi (p)〉 = fi (p), i ∈ I1,
〈x | gi (p)〉 ≤ fi (p), i ∈ I2

}
, (5)

and fi : D → R, gi : D →H, i ∈ I1 ∪ I2, I1 = {1, . . . ,m}, I2 = {m + 1, . . . , n} are
Lipschitz on D with Lipschitz constants `fi , `gi , respectively.

Definition

Multifunction C : D ⇒ H given by (5) is said to be R-regular at a point (p̄, x̄), if for
all (p, x) in a neighbourhood of (p̄, x̄),

dist (x ,C(p)) ≤ αmax{0, |〈x | gi (p)〉 − fi (p)|, i ∈ I1, 〈x | gi (p)〉 − fi (p), i ∈ I2}

for some α > 0.

Theorem

Let H, G be a Hilbert spaces and fi : D → R, gi : tD →H are Lipschitz on D ⊂ G.
If the set-valued mapping C : D ⇒ H given by (5) is R-regular at (p̄, x̄), p̄ ∈ D,
x̄ ∈ C(p̄) then C is Lipschitz-like at (p̄, x̄)

26 / 33



Problem statement Best approximation algorithm Optimization and Dynamical Systems Projected Dynamical System Lipschitzness of projection onto moving polyhedral sets

Lipschitz likeness of the graphical subdifferential mapping

Let p̄ ∈ D. The lower Kuratowski limit is defined as

lim inf
p→p̄

H(p̄) := {x ∈ X | ∀pk → p̄ ∃ xk ∈ H(pk ) s.t. xk → x}

and G(p̄) = PH(p̄)(x0).

Theorem (Main result 1)

Let X be a Hilbert space, p̄ ∈ D ⊂ H and

H(p) :=

{
x ∈ X | 〈x | gi (p)〉 = fi (p), i ∈ I1

〈x | gi (p)〉 ≤ fi (p), i ∈ I2

}
,

where fi (p) : D → R, gi (p) : D → X are Lipschitz functions. Suppose that
x0 /∈ H(p̄), G(p̄) ∈ lim inf

p→p̄
H(p) and RCRCQ holds at (G(p̄), p̄). Then the graphical

subdifferential mapping
R : p → gphNH(p)(·)

is Lipschitz-like around (p̄,G(p̄), x0 − G(p̄))

Remark

Under the assumption of RCRCQ hypotheses (A2) and (A3) of Theorem
Mordukhovich, Nghia, Pham hold.
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Lipschitzness of the projection

Consequence of main theorem 1 and theorem of Mordukhovich, Nghia, Pham

Theorem (Main result 2)

Let X be a Hilbert space and p̄ ∈ D ⊂ X . Assume that RCRCQ holds at (G(p̄), p̄)
and G(x̄) ∈ lim inf

p→p̄
H(p). Then there exists a neighbourhood U of p̄ and a constant

`0 > 0 such that

‖G(p1)− G(p2)‖ ≤ `0‖p1 − p2‖, (p1, p2) ∈ U.
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Consequence for the vector field related to proximal primal-dual dynamical
system

Consequence for the vector field related to proximal primal-dual dynamical system

Let I1 = ∅, I2 = {1, 2}, z̄ = PZ (x0) . Let x0 ∈ H× G, p̄ ∈ D \ {x0,PZ (x0)} and

G(p) := G(u, v∗) := H1(x0, (u, v
∗)) ∩ H2(u, v∗) ={

x ∈ H× G
∣∣∣∣ 〈x | x0 − (u, v∗)〉 ≤ 〈(u, v∗) | x0 − (u, v∗)〉,

〈x | s(u, v∗)〉 ≤ η(u, v∗)

}
Let g1(p) := g1(u, v∗) := x0 − (u, v∗), g2(p) := g2(u, v∗) := s(u, v∗). Then gi (p̄),
i ∈ Ip̄(H(p̄)) are linearly independent and moreover set-valued mapping H satisfies
RCRCQ at (H(p̄), p̄).

Remark

Let us note that g1(x0) = g1(u0, v∗0 ) = 0 and g2(PZ (x0)) = g2(ū, v̄∗) = s(ū, v̄∗) = 0
and at points x0,PZ (x0) RCRCQ does not hold.
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yn
1 :=x0 + εn

PZ (x0)− x0

‖PZ (x0)− x0‖
,

yn
2 :=PZ (x0) + εn

x0 − PZ (x0)

‖x0PZ (x0)‖
,

εn > 0, Dn := D ∩ H1(yn
1 , x0) ∩ H1(yn

2 ,PZ (x0)).
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Consequences

Let H× G be finite-diminensional Hilbert space. Let εn = 1
n

and Dn ⊂ D ⊂ H× G be

defined as before. Then D =
⋃

n Dn and for any n ∈ N, F is Lipschitz continuous on
Dn. Hence projected dynamical system

ẋ(t) = ΠDn (x(t),F (x(t))), for a.a t ≥ 0,

x(0) = x0,n, x(t) ∈ Dn for a.a t ≥ 0
(BA− PDSn)

is uniquely solvable for each n and the solution x(t) of (BA− PDSn) is absolutely
continuous.

J. Gwinner. “On differential variational inequalities and projected dynamical systems—equivalence and a stability result”. In: Discrete

Contin. Dyn. Syst. Dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference, suppl. (2007),

pp. 467–476. issn: 1078-0947
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Thank you for your attention!
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