Metric Regularity and Directional Metric Regularity of Multifunctions and Applications

Huynh Van Ngai

University of Quy Nhon, Viet Nam

WoMBaT 2018 Melbourne November 29- December 1, 2018 Dedicated to Professor Alexander Kruger

Outline

Metric Regularity and Directional Metric Regularity of Multifunctions and Applications

<ロ> <四> <四> <三</p>

- 61 Motivation- Classical results
- 2 Metric Regularity

3 Directional Metric Regularity

4 Application: Newton's method for generalized equations

Metric Regularity

Consider an equation of the form

$$F(x) = y, \tag{1}$$

where $F : X \rightarrow Y$ is a function, X, Y are metric spaces.

The distance d(y, F(x)) is used to judge approximate solutions. The error of some approximate solution *x* is

 $d(x, F^{-1}(y)) = \inf\{d(x, u) : F(u) = y\}.$

One seeks so an error bound of the form

$$d(x, F^{-1}(y)) \le K d(y, F(x))$$
(2)

for all (x, y) globally, or locally, that is, (x, y) near a given (\bar{x}, \bar{y}) with $\bar{y} = F(\bar{x})$, and F is said to metrically regular at \bar{x} . The infimum of such K is regular modulus: reg $F(\bar{x})$.

· < ∃ > < ∃ >

Generalized Equations

When Y is a *m*-dimensional space, we often deal with a system of inequalities:

$$F_i(x) \le y_i, i = 1, ..., m.$$
 (3)

Such inequalities systems are used in optimization for problems with inequalities constraints. This system of inequalities can be studied via the generalized equation : $y \in F(x)$, where,

$$F(x) := (F_i(x))_{i=1,...,m} + \mathbb{R}^m_+; \quad y = (y_i)_{i=1,...,m},$$
(4)

then $F : X \Rightarrow \mathbb{R}^m$ is a multifunction.

A multifunction (Set-valued) is regular at (\bar{x}, \bar{y}) $(\bar{y} \in F(\bar{x}))$ if

 $d(x, F^{-1}(y)) \leq Kd(y, F(x))$ for all (x, y) near (\bar{x}, \bar{y}) .

Banach-Schauder open mapping theorem

X, Y: Banach spaces; $A \in \mathcal{L}(X, Y)$

If Im A = Y then A is open: $\exists r > 0$ such that

 $rB_Y \subseteq A(B_X).$

The upper bound of such r is the Banach constant of A :

 $C(A) = \inf\{\|A^*y^*\|: \|y^*\| = 1\}.$

Moreover,

 $d(x, A^{-1}(y)) \le C(A)^{-1} ||Ax - y||$ for all $(x, y) \in X \times Y$.

Lusternik-Graves theorem

X, Y : Banach spaces; $F : X \to Y$ continuously differentiable at \bar{x} ; $F(\bar{x}) := \bar{y}$.

```
If Im F'(\bar{x}) = Y then \exists r > 0, \exists \varepsilon > 0:
```

 $B(\bar{y}, rt) \subseteq F(B(\bar{x}, t)) \ \forall t \in (0, \varepsilon).$

The upper bound of such r is the Banach constant of $F'(\bar{x})$ is $C(F'(\bar{x}))$, the Banach constant of $F'(\bar{x})$. Moreover,

 $d(x, F^{-1}(y)) \leq r^{-1}d(y, F(x))$ for all (x, y) near (\bar{x}, \bar{y}) .

Robinson and Mangasarian-Fromovitz constraint qualifications

 $F := g - C, g : X \to Y$ is of C^1 class; $C \subseteq Y$ is a nonempty closed convex subset. Given $(\bar{x}, 0) \in \text{gph } F$,

• *F* is metrically regular at $(\bar{x}, 0) \iff$ Robinson constraint qualification (RCQ):

 $0 \in \operatorname{int}[g(\overline{x}) + Dg(\overline{x})X - C].$

• System of equality and inequality: (RCQ) ⇔ (*MFCQ*) (Mangasarian-Fromovitz constraint qualification)

Robinson-Ursescu Theorem

When *F* has a closed and convex graph, the *Robinson-Ursescu Theorem* says that *F* is metrically regular at (x_0, y_0) if and only if $y_0 \in int(ImF)$.

Setting of metric spaces

- X: (complete) metric space
- Y : metric space

 $F: X \Rightarrow Y$ multifunction (set-valued mapping) (which associates with every $x \in X$ a set $F(x) \subseteq Y$)

gph $F := \{(x, y) \in X \times Y : y \in F(x)\}$

$$F^{-1}: Y \rightrightarrows X, F^{-1}(y) = \{x \in X: y \in F(x)\}$$

 $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ is given

Definitions of regularity

• metric regularity: $\exists K > 0, \varepsilon > 0$ s.t.

 $d(x, F^{-1}(y)) \leq K d(y, F(x)), \quad \forall (x, y) \in B((\bar{x}, \bar{y}), \varepsilon),$

reg $F(\bar{x}, \bar{y})$:= infimum of such K : the rate of metric regularity.

openness at a linear rate: ∃r, ε > 0 s.t.

 $B(y, tr) \subseteq F(B(x, t)), \quad \forall (x, y) \in B((\bar{x}, \bar{y}), \varepsilon) \cap \operatorname{gph} F,$

sur $F(\bar{x}, \bar{y}) :=$ supremum of such r : rate of openness (or surjection).

• Lipschitz-like (or Aubin) property: $\exists K, \varepsilon > 0$ s.t.

 $d(y,F(x)) \leq Kd(x,u), \quad \forall x \in B(\bar{x},\varepsilon), \ (u,y) \in B((\bar{x},\bar{y}),\varepsilon) \cap \operatorname{gph} F,$

lip $F(\bar{x}, \bar{y}) :=$ supremum of such K : Lipschitz rate.

Equivalence.

Under the convention $1/\infty = 0$, one has

$$\operatorname{reg} F(\bar{x}, \bar{y}) = \lim F^{-1}(\bar{y}, \bar{x}) = \frac{1}{\operatorname{sur} F(\bar{x}, \bar{y})}.$$

(cf. Borwein-Zuang 1988, Kruger 1988 Penot 1989, also loffe 1981)

• *F* is said to be *regular* at (\bar{x}, \bar{y}) if (one of) the three properties hold.

Characterization of regularity

Set

 $\varphi_{y}(x) = \varphi(x, y) = \liminf_{u \to x} d(y, F(u)),$

the *lower semicontinuous envelope* of the distance function $d(y, F(\cdot))$.

• General characterization of regularity. (Ngai-Théra- 2008) Suppose that gph *F* is closed. Then *F* is regular at $(\bar{x}, \bar{y}) \in \text{gph } F$ with $\sup F(\bar{x}, \bar{y}) > r > 0$ iff for any (x, y) in a neighborhood of (\bar{x}, \bar{y}) with $y \notin F(x)$, we can find $u \in X$ s.t.

 $rd(u, x) < \varphi(x, y) - \varphi(u, y).$

Infinitesimal characterization: slopes

Definition (Degiorgi-Marino-Tosques (1980)) Slope of a lower semicontinuous function *f* at *x* ∈ dom*f* is the quantity defined by |∇*f*|(*x*) = 0 if *x* is a local minimum of *f*, otherwise

$$|\nabla f|(x) = \limsup_{y \to x, y \neq x} \frac{f(x) - f(y)}{d(x, y)}.$$

For $x \notin \text{dom} f$, we set $|\nabla f|(x) = +\infty$.

• **Example.** X, Y are normed spaces, $f \in C^1 : |\nabla f|(x) = ||f'(x)||$.

Infinitesimal regularity criteration

Theorem. (N.-Tron-Théra - 2011) X: complete metric space; Y : metric space; $F : X \rightrightarrows Y$, $(\bar{x}, \bar{y}) \in \text{gph } F$. Then

 $\sup F(\bar{x}, \bar{y}) \geq \liminf_{(x,y)\to (\bar{x}, \bar{y}), y\notin F(x)} |\nabla \varphi_y|(x).$

Moreover, if Y is a normed space (or more general, a smooth manifold, or a length metric space) then

 $\operatorname{sur} F(\bar{x}, \bar{y}) = \liminf_{(x,y) \to (\bar{x}, \bar{y}), y \notin F(x)} |\nabla \varphi_y|(x).$

An application: Lipschitz perturbation

Milyutin perturbation theorem. *Y: normed space;* $F : X \Rightarrow Y$, $(\bar{x}, \bar{y}) \in \text{gph } F$; $g : X \to Y$ is Lipschitz near \bar{x} . Then

 $\operatorname{sur}(F+g)(\bar{x},\bar{y}+g(\bar{x})) \geq \operatorname{sur} F(\bar{x},\bar{y}) - \operatorname{lip} g(\bar{x}).$

Fréchet Subdifferential - Normal cone - Coderative

X-Asplund space.

i

• $f: X \to \mathbb{R} \cup \{+\infty\}$ Fréchet subdifferential

$$\partial_{\mathcal{F}}f(x) = \{x^* \in X^* : \liminf_{h \to 0} rac{f(x+h) - f(x) - \langle x^*, h \rangle}{\|h\|} \ge 0\}$$

Normal cone. For a closed subset C of X, the normal cone to C at x ∈ C is defined by N(C, x) = ∂δ_C(x), where δ_C is the *indicator function* of C given by

 $\delta_{\mathcal{C}}(x) = 0$ if $x \in \mathcal{C}$ and $\delta_{\mathcal{C}}(x) = +\infty$ otherwise,

• Coderivative. Let $F : X \Rightarrow Y$ be a closed multifunction (graph-closed) and let $(\bar{x}, \bar{y}) \in \text{gph}F$.

The coderivative of *F* at (\bar{x}, \bar{y}) is the multifunction $D^*F(\bar{x}, \bar{y}) : Y^* \rightrightarrows X^*$ defined by

 $D^*F(\bar{x},\bar{y})(y^*) = \{x^* \in X^* : (x^*,-y^*) \in N(\text{gph}F,(\bar{x},\bar{y}))\}.$

Coderivatives-Examples

- $A \in \mathcal{L}(X, Y) : D^*A(y^*) = A^*y^*$.
- $F: X \to Y$ is $C^1: D^*F(x)(y^*) = (F'(x))^*y^* = y^* \circ F'(x)$.

Estimation for slopes

X, Y- Asplund spaces $\varphi_y(x) = \liminf_{u \to x} d(y, F(u)).$

Theorem. (N.-Tron-Théra - 2011) $F : X \Rightarrow Y$, $(\bar{x}, \bar{y}) \in \text{gph } F$; for any subdifferential on $X \times Y$, one has

$$\begin{split} & \liminf_{\substack{(x,y)\to(\bar{x},\bar{y}),y\notin F(x)\\ \lim_{\varepsilon\to 0}\inf\{\|x^*\|:\ x^*\in D^*F(u,v)(y^*),\ (u,v)\in B((\bar{x},\bar{y}),\varepsilon),\ \|y^*\|=1\}. \end{split}$$

Subdifferential regularity criterion

As a result, (loffe 1987)

```
 \sup_{\varepsilon \to 0} F(\bar{x}, \bar{y}) = \lim_{\varepsilon \to 0} \inf\{\|x^*\| : x^* \in D^*F(u, v)(y^*), (u, v) \in B((\bar{x}, \bar{y}), \varepsilon), \|y^*\| = 1\};
```

Some references

- A. D. IOFFE, Metric Regularity and subdifferential calculus, *Russian Math. Surveys* (2000)
- B.S. MORDUKHOVICH, Variational Analysis and Generalized Differentiation, Springer (2006)
- A. L. DONTCHEV, A.S. LEWIS and R.T. ROCKAFELLAR, The radius of metric regularity, *Trans. Amer. Math. Soc.* (2003)
- A. KRUGER, Covering theorem for set-valued mapping, *Optimization* (1988)
- H. V. NGAI, A. KRUGER, M. THERA, Slopes of multifunctions and extensions of metric regularity, *Vietnam J. Math.* (2012)
- H.V. NGAI and M. THERA, Error bounds in metric spaces and application to the perturbation stability of metric regularity, *SIAM J. Optim.* (2008)
- H.V. NGAI, N.H. TRON and M. THERA, Implicit Multifunction Theorems in complete metric spaces, *Math. Program.* (2011)

< ロ > < 同 > < 回 > < 回 >

Example

- $f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x) = F(x_1, x_2) := (x_1, x_2^2), \ (x_1, x_2) \in \mathbb{R}^2;$
- $F : \mathbb{R}^2 \Longrightarrow \mathbb{R}^2, \ F := f \mathbb{R}^2_+.$
- $f(0,0) + Df(0,0)(\mathbb{R}^2) \mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 : y \le 0\};$
- $0 = (0,0) \notin \operatorname{int}[f(0,0) + Df(0,0)(\mathbb{R}^2) \mathbb{R}^2_+].$

By (RCQ), *F* is not metrically regularity at (0,0). However, by directly checking, one has for any $v = (v_1, v_2) \in \mathbb{R}^2$ with $v_2 < 0$,

 $d(x, F^{-1}(y)) \le d(y, F(x)), \ \forall (x, y) \text{ near } (0, 0), \ y \in F(x) + \text{cone}\{v\}.$

Remark. In many practical applications, the metric regularity is too strong, and we need only some weaker regular properties.

Relative Metric Regularity

Given a subset *V* of $X \times Y$ and a point $(x, y) \in X \times Y$, we set

 $V_x := \{z \in Y : (x, z) \in V\}$ and $V_y := \{u \in X : (u, y) \in V\}.$

Definition (loffe-2010)

Let X and Y be metric spaces, and let $V \subset X \times Y$. We say that a set-valued mapping $F : X \Rightarrow Y$ is *metrically regular relatively to* V at $(\bar{x}, \bar{y}) \in V \cap \text{gph } T$ with a modulus $\tau > 0$, if there exist $\varepsilon > 0$ such that

$$d(x, F^{-1}(y) \cap \operatorname{cl} V_y) \leq \tau d(y, F(x))$$
(5)

whenever $(x, y) \in (B(\bar{x}, \varepsilon) \times B(\bar{y}, \varepsilon)) \cap V$ and $d(y, F(x)) < \varepsilon$.

Metric Regularity relative to a cone

 $C \subseteq Y$: a nonempty cone;

$$C(\delta) := \{ y \in Y : d(y, C) \le \delta \|y\| \}, \ \delta > 0.$$

- Metric Regularity relative to C : F is metrically regular relatively to V := C(δ), for some δ > 0.
- When $C := \operatorname{cone}\{v\}$: *Directional metric regularity* in *v* (Arutyunov *et al*-2005).

Relative lower semicontinuous envelop

Given a subset V of $X \times Y$ and a point $(x, y) \in X \times Y$, a multifunction $F : X \rightrightarrows Y$, set

 $V_x := \{z \in Y : (x, z) \in V\}$ and $V_y := \{u \in X : (u, y) \in V\}.$

 The lower semicontinuous envelop of d(y, F(·)) relative to V ⊆ X × Y :

$$\varphi_{F,V}(x,y) := \begin{cases} \liminf_{\substack{c \mid V_y \ni u \to x \\ +\infty}} d(y,F(u)) & \text{if } x \in cl V_y \\ +\infty & \text{otherwise.} \end{cases}$$
(6)

Slope Characterization

Theorem

If There exist $\delta, \gamma > 0$ such that

$$|\nabla \varphi_{F,V}(\cdot, y)|(x) \ge \tau^{-1},\tag{7}$$

for all $(x, y) \in (B(\bar{x}, \delta) \times B(\bar{y}, \delta))$ with $\varphi_{F,V}(x, y) \in (0, \gamma)$, then F is metrically regular relative to V at (\bar{x}, \bar{y}) .

3 N

Coderivative characterization

Denote by S_{Y^*} the unit sphere in the continuous dual Y^* of Y, and by d_* the metric associated with the dual norm on X^* . For given $\bar{y} \in Y$ and $\delta > 0$, let us define the set

$$T(C,\delta) := \left\{ \begin{array}{cc} (y_1^*, y_2^*) & \in Y^* \times Y^* : \exists a \in C \cap S_{Y^*}, \\ \max\{\langle y_1^*, a \rangle, |\langle y_2^*, a \rangle|\} \le \delta, \|y_1^* + y_2^*\| = 1 \end{array} \right\}.$$
(8)

To a given multifunction *F* : *X* ⇒ *Y*, we associate the multifunction *G* : *X* ⇒ *Y* × *Y* defined by

 $G(x) = F(x) \times F(x), \quad x \in X.$

 D*G: the coderivative of G with respect to the Fréchet subdifferential.

Theorem

Let X, Y be Asplund spaces and let $F : X \Rightarrow Y$ be a closed multifunction. Let $(x_0, y_0) \in \text{gph } F$ and a nonempty cone $C \subseteq Y$ be given. Assume that F has convex values around x_0 , i.e., F(x) is convex for all x near x_0 . If

 $\liminf_{\substack{(x,y_1,y_2)\stackrel{G}{\to}(x_0,y_0,y_0)\\\delta\downarrow 0^+}} d_*(0, D^*G(x,y_1,y_2)(T(C,\delta))) > m > 0,$ (9)

then F is directionally metrically regular relatively to C with modulus $\tau \leq m^{-1}$ at (x_0, y_0) . The notation $(x, y_1, y_2) \xrightarrow{G} (x_0, y_0, y_0)$ means that $(x, y_1, y_2) \rightarrow (x_0, y_0, y_0)$ with $(x, y_1, y_2) \in \text{gph } G$.

Convex multifunctions

Corollary (loffe-08)

Let X, Y be Banach spaces and $F : X \Rightarrow Y$ be a closed convex multifunction and let $(x_0, y_0) \in \text{gph } F$ and $v \in Y$. F is directionally metrically regular in direction v at (x_0, y_0) if and only if

 $\operatorname{cone}\{v\} \cap \operatorname{int}(F(X) - y_0) \neq \emptyset.$ (10)

Robustness

Theorem

Let X be a complete metric space and Y be a normed space. Let $C \subseteq Y$ be a nonempty cone in Y. Let $F : X \rightrightarrows Y$ be a closed multifunction and $(x_0, y_0) \in \operatorname{gph} F$. Suppose that F is metrically regular with a modulus $\tau > 0$ relatively to C. Let $g : X \to Y$ be a mapping locally Lipschitz around x_0 with a Lipschitz constant L > 0. Then F + g is metrically regular in the direction \overline{y} at $(x_0, y_0 + g(x_0))$ with modulus

$$\operatorname{reg}_{\mathcal{C}}(\mathcal{F}+\mathcal{g})(x_0,y_0+\mathcal{g}(x_0)) \leq \left(\frac{1-lpha}{ au(1+lpha)}-\mathcal{L}
ight)^{-1},$$

provided

$$\alpha \in (0, 1), \text{ and } L < rac{\delta lpha}{ au(1 + lpha)(1 + \delta(1 - lpha))}.$$

References

- A.V. Arutyunov, E.R. Avakov, A. F. Izmailov, Directional Regularity and Metric Regularity, *SIAM J. Optim.* (2007)
- A. loffe, On regularity concepts in variational analysis, *J. Fixed Point Theory and Appl.*, (2008)
- H.V. Ngai, M Théra, Directional Metric Regularity of Multifunctions, *Mathematics of Operations Researchs*, (2015)
- H.V. Ngai, N.H. Tron, M. Théra, Metric Regularity relative to a cone, *Submitted* (2018)

Newton's Method

Consider the problem:

find x such that f(x) = 0,

X, Y: Banach spaces; $f : X \to Y$ is of C^1 .

Newton's Method for solving this equation is the iterative process:

 $x_{k+1} = x_k - Df(x_k)^{-1}f(x_k),$

where x_0 is given. $Df(x_k)$ is assumed to be invertible. If the sequence (x_k) converge to ζ such that $Df(\zeta)$ is invertible, then $f(\zeta) = 0$: the non-singular zeros of *f* correspond to the fixed points of the Newton operator:

 $N_f(x) = x - Df(x)^{-1}f(x).$

Remark. More generally, when Df(x) is surjectif, the Newton operator is defined by

 $N_f(x) = x - Df(x)^+ f(x),$

where $Df(x)^+$ denotes the Moore-Penrose generalized inverse $(Df(x)^+ = Df(x)^{-1}$ when Df(x) is invertible)

Quadratic convergence

 $U \subseteq X$ is an open set, $f : U \rightarrow Y$ is of C^2 on U.

Theorem. Let $\zeta \in U$ be such that $f(\zeta) = 0$ and let $Df(\zeta)$ be surjectif. For r > 0 with $\overline{B}(\zeta, r) \subseteq U$, set

$$\mathcal{K}(f,\zeta,r) = \sup_{\|x-\zeta\| \leq r} \|Df(\zeta)^+ D^2 f(x)\|.$$

If $2K(f, \zeta, r)r \le 1$ then for all $x_0 \in \overline{B}(\zeta, r)$, then the Newton sequence $x_{k+1} = N_f(x_k)$ is defined and converges to ζ , quadratically,

$$||x_k - \zeta|| \le \left(\frac{1}{2}\right)^{2^k - 1} ||x_0 - \zeta||.$$

Kantorovich theorem

Set $\beta(f, x_0) = \|Df(x_0)^+ f(x_0)\|$ if $Df(x_0)$ is surjectif, and $\beta(f, x_0) = +\infty$, otherwise.

Theorem. (Kantorovich 1949) *Suppose that the following conditions are satisfied:*

- Df(x₀) is surjectif,
- $2\beta(f, x_0) \leq r$,
- $2\beta(f, x_0)K(f, x_0, r) \leq 1$.

then the Newton sequence $x_{k+1} = N_f(x_k)$ is defined and converges to some ζ with $f(\zeta) = 0$, and

$$||x_k - \zeta|| \le 1.63281...\left(\frac{1}{2}\right)^{2^k-1} ||x_0 - \zeta||,$$

with

$$1.63281... = \sum_{k=0}^{\infty} \frac{1}{2^{2^k - 1}}.$$

Newton's method for generalized equations Problem:

ind x such that
$$0 \in f(x) + F(x)$$
, (11)

where $f : X \to Y$ is a differentiable function and $F : X \Rightarrow Y$ is a multifunction with closed graph.

Generalized Newton's method for solving (11) : Choose an initial point x_0 and generate a sequence (x_k) iteratively by taking x_{k+1} to be a solution to the auxiliary generalized equation

$$0 \in f(x_k) + Df(x_k)(x - x_k) + F(x)$$
 for $k = 0, 1, ...$ (12)

Equivalently,

$$x_{k+1} \in (Df(x_k) + F)^{-1}(Df(x_k) - f(x_k)).$$

This method uses *"partial linearization"*: we linearize *f* at the current point but leave *F* intact. It reduces to the standard version of Newton's method for solving the nonlinear equation f(x) = 0 when F = 0.

< ロ > < 同 > < 三 > < 三 > -

Quadratic convergence

Theorem (Dontchev-Rockafellar 2009)

Let $\zeta \in X$ be a solution of (11). Consider the Newton method (12) for a continuously differentiable function with $\operatorname{lip}(Df, \zeta) < \infty$. Assume that the mapping f + F is metrically regular at $(\zeta, 0)$. Then for any γ satisfying

 $\gamma > \frac{1}{2} \operatorname{reg}(f + F)(\zeta, 0) \operatorname{lip}(Df, \zeta),$

there exists a neighborhood \mathcal{O} of ζ such that, for any $x_0 \in \mathcal{O}$, there is a sequence (x_k) generated by the method which converges quadratically to ζ in the sense

$$\|x_{k+1} - \zeta\| \le \gamma \|x_k - \zeta\|^2, \quad k = 0, 1, \dots$$

Quadratic convergence under directional metric regularity

Theorem (N. 2018)

Let $\zeta \in X$ be a solution of (11). Consider Newton's method (12) for a continuously differentiable function with $\lim(Df, \zeta) < \infty$. Assume that the mapping f + F is metrically regular relatively to a cone *C* at $(\zeta, 0)$. Then there exists a neighborhood \mathcal{O} of ζ such that, for any $x_0 \in \mathcal{O}$, with $0 \in f(x_0) + F(x_0) + C$, there is a sequence (x_k) generated by the method which converges quadratically to ζ .

References

- A. L. Dontchev, R. T. Rockafellar, *Implicit Function and Solution Mappings, A View from Variational Analysis, Springer Monographs in Mathematics, Springer (2010).*
- S. Adly, H. V. Ngai, N.V. Vu Newton's method for solving generalized equations: Kantorovich's and Smale approaches, *JMAA* (2016)
- H.V. Ngai, Convergence of the Newton method for generalized equations under directional metric regularity, *in preparation* (2018)

THANK YOU FOR YOUR PATIENCE

'문 ▶ ★ 문