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Metric Regularity
Consider an equation of the form

F (x) = y , (1)

where F : X → Y is a function, X ,Y are metric spaces.

The distance d(y ,F (x)) is used to judge approximate solutions. The
error of some approximate solution x is

d(x ,F−1(y)) = inf{d(x ,u) : F (u) = y}.

One seeks so an error bound of the form

d(x ,F−1(y)) ≤ Kd(y ,F (x)) (2)

for all (x , y) globally, or locally, that is, (x , y) near a given (x̄ , ȳ) with
ȳ = F (x̄), and F is said to metrically regular at x̄ . The infimum of
such K is regular modulus: reg F (x̄).
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Generalized Equations
When Y is a m-dimensional space, we often deal with a system of
inequalities:

Fi (x) ≤ yi , i = 1, ...,m. (3)

Such inequalities systems are used in optimization for problems with
inequalities constraints. This system of inequalities can be studied via the
generalized equation : y ∈ F (x), where,

F (x) := (Fi (x))i=1,...,m + Rm
+; y = (yi )i=1,...,m, (4)

then F : X ⇒ Rm is a multifunction.

A multifunction (Set-valued) is regular at (x̄ , ȳ) (ȳ ∈ F (x̄)) if

d(x ,F−1(y)) ≤ Kd(y ,F (x)) for all (x , y) near (x̄ , ȳ).
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Banach-Schauder open mapping theorem

X ,Y : Banach spaces; A ∈ L(X ,Y )

If Im A = Y then A is open: ∃r > 0 such that

rBY ⊆ A(BX ).

The upper bound of such r is the Banach constant of A :

C(A) = inf{‖A∗y∗‖ : ‖y∗‖ = 1}.

Moreover,

d(x ,A−1(y)) ≤ C(A)−1‖Ax − y‖ for all (x , y) ∈ X × Y .
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Lusternik-Graves theorem

X ,Y : Banach spaces; F : X → Y continuously differentiable at x̄ ;
F (x̄) := ȳ .

If Im F ′(x̄) = Y then ∃r > 0, ∃ε > 0 :

B(ȳ , rt) ⊆ F (B(x̄ , t)) ∀t ∈ (0, ε).

The upper bound of such r is the Banach constant of F ′(x̄) is
C(F ′(x̄)), the Banach constant of F ′(x̄). Moreover,

d(x ,F−1(y)) ≤ r−1d(y ,F (x)) for all (x , y) near (x̄ , ȳ).
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Robinson and Mangasarian-Fromovitz constraint
qualifications

F := g − C, g : X → Y is of C1 class; C ⊆ Y is a nonempty closed
convex subset. Given (x̄ ,0) ∈ gph F ,
• F is metrically regular at (x̄ ,0) ⇐⇒ Robinson constraint

qualification (RCQ):

0 ∈ int[g(x̄) + Dg(x̄)X − C].

• System of equality and inequality: (RCQ) ⇔ (MFCQ)
(Mangasarian-Fromovitz constraint qualification)
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Robinson-Ursescu Theorem
When F has a closed and convex graph, the Robinson-Ursescu
Theorem says that F is metrically regular at (x0, y0) if and only if
y0 ∈ int(ImF ).
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Setting of metric spaces
X : (complete) metric space

Y : metric space

F : X ⇒ Y multifunction (set-valued mapping) (which associates with
every x ∈ X a set F (x) ⊆ Y )

gph F := {(x , y) ∈ X × Y : y ∈ F (x)}

F−1 : Y ⇒ X , F−1(y) = {x ∈ X : y ∈ F (x)}

(x̄ , ȳ) ∈ gph F is given
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Definitions of regularity
• metric regularity: ∃K > 0, ε > 0 s.t.

d(x ,F−1(y)) ≤ Kd(y ,F (x)), ∀(x , y) ∈ B((x̄ , ȳ), ε),

reg F (x̄ , ȳ) := infimum of such K : the rate of metric regularity.

• openness at a linear rate: ∃r , ε > 0 s.t.

B(y , tr) ⊆ F (B(x , t)), ∀(x , y) ∈ B((x̄ , ȳ), ε) ∩ gph F ,

sur F (x̄ , ȳ) := supremum of such r : rate of openness (or surjection).

• Lipschitz-like (or Aubin) property: ∃K , ε > 0 s.t.

d(y ,F (x)) ≤ Kd(x , u), ∀x ∈ B(x̄ , ε), (u, y) ∈ B((x̄ , ȳ), ε) ∩ gph F ,

lip F (x̄ , ȳ) := supremum of such K : Lipschitz rate.
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Equivalence.
Under the convention 1/∞ = 0, one has

reg F (x̄ , ȳ) = lip F−1(ȳ , x̄) =
1

sur F (x̄ , ȳ)
.

(cf. Borwein-Zuang 1988, Kruger 1988 Penot 1989, also Ioffe 1981)

• F is said to be regular at (x̄ , ȳ) if (one of ) the three properties
hold.
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Characterization of regularity
• Set

ϕy (x) = ϕ(x , y) = lim inf
u→x

d(y ,F (u)),

the lower semicontinuous envelope of the distance function d(y ,F (·)).

• General characterization of regularity. (Ngai-Théra- 2008) Suppose
that gph F is closed. Then F is regular at (x̄ , ȳ) ∈ gph F with
sur F (x̄ , ȳ) > r > 0 iff for any (x , y) in a neighborhood of (x̄ , ȳ) with
y /∈ F (x), we can find u ∈ X s.t.

rd(u, x) < ϕ(x , y)− ϕ(u, y).
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Infinitesimal characterization: slopes

• Definition (Degiorgi-Marino-Tosques (1980)) Slope of a lower
semicontinuous function f at x ∈ domf is the quantity defined by
|∇f |(x) = 0 if x is a local minimum of f , otherwise

|∇f |(x) = lim sup
y→x,y 6=x

f (x)− f (y)

d(x , y)
.

For x /∈ domf , we set |∇f |(x) = +∞.

• Example. X ,Y are normed spaces, f ∈ C1 : |∇f |(x) = ‖f ′(x)‖.
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Infinitesimal regularity criteration
Theorem. (N.-Tron-Théra - 2011) X: complete metric space; Y :
metric space; F : X ⇒ Y , (x̄ , ȳ) ∈ gph F . Then

sur F (x̄ , ȳ) ≥ lim inf
(x,y)→(x̄,ȳ),y /∈F (x)

|∇ϕy |(x).

Moreover, if Y is a normed space (or more general, a smooth
manifold, or a length metric space) then

sur F (x̄ , ȳ) = lim inf
(x,y)→(x̄,ȳ),y /∈F (x)

|∇ϕy |(x).
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An application: Lipschitz perturbation

Milyutin perturbation theorem. Y: normed space; F : X ⇒ Y ,
(x̄ , ȳ) ∈ gph F ; g : X → Y is Lipschitz near x̄ . Then

sur(F + g)(x̄ , ȳ + g(x̄)) ≥ sur F (x̄ , ȳ)− lip g(x̄).
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Fréchet Subdifferential - Normal cone - Coderative
X−Asplund space.
• f : X → R ∪ {+∞} Fréchet subdifferential

∂F f (x) = {x∗ ∈ X ∗ : lim inf
h→0

f (x + h)− f (x)− 〈x∗,h〉
‖h‖

≥ 0}

• Normal cone. For a closed subset C of X , the normal cone to C
at x ∈ C is defined by N(C, x) = ∂δC(x), where δC is the
indicator function of C given by

δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise,
• Coderivative. Let F : X ⇒ Y be a closed multifunction

(graph-closed) and let (x̄ , ȳ) ∈ gphF .

The coderivative of F at (x̄ , ȳ) is the multifunction
D∗F (x̄ , ȳ) : Y ∗ ⇒ X ∗ defined by

D∗F (x̄ , ȳ)(y∗) = {x∗ ∈ X ∗ : (x∗,−y∗) ∈ N(gphF , (x̄ , ȳ))}.
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Coderivatives-Examples

• A ∈ L(X ,Y ) : D∗A(y∗) = A∗y∗.

• F : X → Y is C1 : D∗F (x)(y∗) = (F ′(x))∗y∗ = y∗ ◦ F ′(x).
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Estimation for slopes
X ,Y− Asplund spaces ϕy (x) = lim inf

u→x
d(y ,F (u)).

Theorem. (N.-Tron-Théra - 2011) F : X ⇒ Y , (x̄ , ȳ) ∈ gph F ; for any
subdifferential on X × Y , one has

lim inf
(x,y)→(x̄,ȳ),y /∈F (x)

|∇ϕy |(x) =

lim
ε→0

inf{‖x∗‖ : x∗ ∈ D∗F (u, v)(y∗), (u, v) ∈ B((x̄ , ȳ), ε), ‖y∗‖ = 1}.
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Subdifferential regularity criterion

As a result, (Ioffe 1987)

sur F (x̄ , ȳ) =
lim
ε→0

inf{‖x∗‖ : x∗ ∈ D∗F (u, v)(y∗), (u, v) ∈ B((x̄ , ȳ), ε), ‖y∗‖ = 1};
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Example

• f : R2 → R2, f (x) = F (x1, x2) := (x1, x2
2 ), (x1, x2) ∈ R2;

• F : R2 ⇒ R2, F := f − R2
+.

• f (0,0) + Df (0,0)(R2)− R2
+ = {(x , y) ∈ R2 : y ≤ 0};

• 0 = (0,0) /∈ int[f (0,0) + Df (0,0)(R2)− R2
+].

By (RCQ), F is not metrically regularity at (0,0). However, by directly
checking, one has for any v = (v1, v2) ∈ R2 with v2 < 0,

d(x ,F−1(y)) ≤ d(y ,F (x)), ∀(x , y) near (0,0), y ∈ F (x) + cone{v}.

Remark. In many practical applications, the metric regularity is too
strong, and we need only some weaker regular properties.
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Relative Metric Regularity
Given a subset V of X × Y and a point (x , y) ∈ X × Y , we set

Vx := {z ∈ Y : (x , z) ∈ V} and Vy := {u ∈ X : (u, y) ∈ V}.

Definition (Ioffe-2010)

Let X and Y be metric spaces, and let V ⊂ X × Y . We say that a
set-valued mapping F : X ⇒ Y is metrically regular relatively to V at
(x̄ , ȳ) ∈ V ∩ gph T with a modulus τ > 0, if there exist ε > 0 such that

d
(
x ,F−1(y) ∩ clVy

)
≤ τd(y ,F (x)) (5)

whenever (x , y) ∈
(
B(x̄ , ε)× B(ȳ , ε)

)
∩ V and d(y ,F (x)) < ε.
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Metric Regularity relative to a cone
C ⊆ Y : a nonempty cone;

C(δ) := {y ∈ Y : d(y ,C) ≤ δ‖y‖}, δ > 0.

• Metric Regularity relative to C : F is metrically regular relatively
to V := C(δ), for some δ > 0.

• When C := cone{v} : Directional metric regularity in v
(Arutyunov et al-2005).
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Relative lower semicontinuous envelop
Given a subset V of X × Y and a point (x , y) ∈ X × Y , a multifunction
F : X ⇒ Y , set

Vx := {z ∈ Y : (x , z) ∈ V} and Vy := {u ∈ X : (u, y) ∈ V}.

• The lower semicontinuous envelop of d(y ,F (·)) relative to
V ⊆ X × Y :

ϕF ,V (x , y) :=

{
lim inf

clVy3u→x
d(y ,F (u)) if x ∈ clVy

+∞ otherwise.
(6)
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Slope Characterization

Theorem
If There exist δ, γ > 0 such that

|∇ϕF ,V (·, y)|(x) ≥ τ−1, (7)

for all (x , y) ∈
(
B(x̄ , δ)× B(ȳ , δ)

)
with ϕF ,V (x , y) ∈ (0, γ), then F is

metrically regular relative to V at (x̄ , ȳ).
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Coderivative characterization
Denote by SY∗ the unit sphere in the continuous dual Y ∗ of Y , and by
d∗ the metric associated with the dual norm on X ∗. For given ȳ ∈ Y
and δ > 0, let us define the set

T (C, δ) :=

{
(y∗1 , y

∗
2 ) ∈ Y ∗ × Y ∗ : ∃a ∈ C ∩ SY∗ ,

max{〈y∗1 ,a〉, |〈y∗2 ,a〉|} ≤ δ, ‖y∗1 + y∗2 ‖ = 1

}
.

(8)

• To a given multifunction F : X ⇒ Y , we associate the
multifunction G : X ⇒ Y × Y defined by

G(x) = F (x)× F (x), x ∈ X .

• D∗G : the coderivative of G with respect to the Fréchet
subdifferential.
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Theorem
Let X ,Y be Asplund spaces and let F : X ⇒ Y be a closed
multifunction. Let (x0, y0) ∈ gph F and a nonempty cone C ⊆ Y be
given. Assume that F has convex values around x0, i.e., F (x) is
convex for all x near x0. If

lim inf
(x,y1,y2)

G→(x0,y0,y0)
δ↓0+

d∗(0,D∗G(x , y1, y2)(T (C, δ))) > m > 0, (9)

then F is directionally metrically regular relatively to C with modulus
τ ≤ m−1 at (x0, y0). The notation (x , y1, y2)

G→ (x0, y0, y0) means that
(x , y1, y2)→ (x0, y0, y0) with (x , y1, y2) ∈ gph G.
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Convex multifunctions

Corollary (Ioffe-08)

Let X ,Y be Banach spaces and F : X ⇒ Y be a closed convex
multifunction and let (x0, y0) ∈ gph F and v ∈ Y . F is directionally
metrically regular in direction v at (x0, y0) if and only if

cone{v} ∩ int(F (X )− y0) 6= ∅. (10)

Metric Regularity and Directional Metric Regularity of Multifunctions and Applications Huynh Van Ngai



Motivation- Classical results Metric Regularity Directional Metric Regularity Application: Newton’s method for generalized equations

Robustness

Theorem
Let X be a complete metric space and Y be a normed space. Let
C ⊆ Y be a nonempty cone in Y . Let F : X ⇒ Y be a closed
multifunction and (x0, y0) ∈ gph F . Suppose that F is metrically
regular with a modulus τ > 0 relatively to C. Let g : X → Y be a
mapping locally Lipschitz around x0 with a Lipschitz constant L > 0.
Then F + g is metrically regular in the direction ȳ at (x0, y0 + g(x0))
with modulus

regC(F + g)(x0, y0 + g(x0)) ≤
(

1− α
τ(1 + α)

− L
)−1

,

provided

α ∈ (0,1), and L <
δα

τ(1 + α)(1 + δ(1− α))
.
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Newton’s Method
Consider the problem:

find x such that f (x) = 0,

X ,Y : Banach spaces; f : X → Y is of C1.

Newton’s Method for solving this equation is the iterative process:

xk+1 = xk − Df (xk )−1f (xk ),

where x0 is given. Df (xk ) is assumed to be invertible. If the
sequence (xk ) converge to ζ such that Df (ζ) is invertible, then
f (ζ) = 0 : the non-singular zeros of f correspond to the fixed points of
the Newton operator:

Nf (x) = x − Df (x)−1f (x).
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Remark. More generally, when Df (x) is surjectif, the Newton operator
is defined by

Nf (x) = x − Df (x)+f (x),

where Df (x)+ denotes the Moore-Penrose generalized inverse
(Df (x)+ = Df (x)−1 when Df (x) is invertible)
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Quadratic convergence
U ⊆ X is an open set, f : U → Y is of C2 on U.

Theorem. Let ζ ∈ U be such that f (ζ) = 0 and let Df (ζ) be surjectif.
For r > 0 with B̄(ζ, r) ⊆ U, set

K (f , ζ, r) = sup
‖x−ζ‖≤r

‖Df (ζ)+D2f (x)‖.

If 2K (f , ζ, r)r ≤ 1 then for all x0 ∈ B̄(ζ, r), then the Newton sequence
xk+1 = Nf (xk ) is defined and converges to ζ, quadratically,

‖xk − ζ‖ ≤
(

1
2

)2k−1

‖x0 − ζ‖.
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Kantorovich theorem
Set β(f , x0) = ‖Df (x0)+f (x0)‖ if Df (x0) is surjectif, and β(f , x0) = +∞,
otherwise.

Theorem. (Kantorovich 1949) Suppose that the following conditions
are satisfied:
• Df (x0) is surjectif,
• 2β(f , x0) ≤ r ,
• 2β(f , x0)K (f , x0, r) ≤ 1.

then the Newton sequence xk+1 = Nf (xk ) is defined and converges to
some ζ with f (ζ) = 0, and

‖xk − ζ‖ ≤ 1.63281...
(

1
2

)2k−1

‖x0 − ζ‖,

with

1.63281... =
∞∑

k=0

1
22k−1

.
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Newton’s method for generalized equations
Problem:

find x such that 0 ∈ f (x) + F (x), (11)

where f : X → Y is a differentiable function and F : X ⇒ Y is a multifunction with
closed graph.

Generalized Newton’s method for solving (11) : Choose an initial point x0 and
generate a sequence (xk ) iteratively by taking xk+1 to be a solution to the auxiliary
generalized equation

0 ∈ f (xk ) + Df (xk )(x − xk ) + F (x) for k = 0, 1, ... (12)

Equivalently,
xk+1 ∈ (Df (xk ) + F )−1(Df (xk )− f (xk )).

This method uses ”partial linearization” : we linearize f at the current point but leave F
intact. It reduces to the standard version of Newton’s method for solving the nonlinear
equation f (x) = 0 when F = 0.
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Quadratic convergence

Theorem (Dontchev-Rockafellar 2009)

Let ζ ∈ X be a solution of (11). Consider the Newton method (12) for
a continuously differentiable function with lip(Df , ζ) <∞. Assume
that the mapping f + F is metrically regular at (ζ,0). Then for any γ
satisfying

γ >
1
2

reg(f + F )(ζ,0)lip(Df , ζ),

there exists a neighborhood O of ζ such that, for any x0 ∈ O, there is
a sequence (xk ) generated by the method which converges
quadratically to ζ in the sense

‖xk+1 − ζ‖ ≤ γ‖xk − ζ‖2, k = 0,1, ....
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Quadratic convergence under directional metric
regularity

Theorem (N. 2018)

Let ζ ∈ X be a solution of (11). Consider Newton’s method (12) for a
continuously differentiable function with lip(Df , ζ) <∞. Assume that
the mapping f + F is metrically regular relatively to a cone C at (ζ,0).
Then there exists a neighborhood O of ζ such that, for any x0 ∈ O,
with 0 ∈ f (x0) + F (x0) + C, there is a sequence (xk ) generated by the
method which converges quadratically to ζ.
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