NON-POLYHEDRAL EXTENSIONS OF THE FRANK AND WOLFE THEOREM

J.E. Martínez-Legaz, D. Noll, W. Sosa

WoMBaT 2018 29 November - 1 December 2018

Deakin University, Melbourne

OUTLINE OF THE PRESENTATION

FW-SETS cFW SETS MOTZKIN SETS MOTZKIN FW-SETS PARABOLIC SETS q-ASYMPTOTES

FW-SETS

 $q: \mathbb{R}^{n} \to \mathbb{R}$ $q(x) := \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$ $A = A^{\mathsf{T}} \in \mathbb{R}^{n \times n}, \ b \in \mathbb{R}^{n}, \ c \in \mathbb{R}$

 $F\subseteq \mathbb{R}^n$

F is an FW-set if every quadratic function q which is bounded below on F attains its infimum on F.

Every compact set is an *FW*-set.

Every convex polyhedron P is an FW-set. (M. Frank, P. Wolfe, 1956).

PROPOSITION. FW-sets are closed.

PROPOSITION. Affine images of FW-sets are FW-sets.

PROPOSITION.

The union of two FW-sets is FW, too.

 $\begin{array}{l} M \text{ affine manifold in } \mathbb{R}^n \\ F \subseteq \mathbb{R}^n \end{array}$

M is called an *f*-asymptote (Klee, 1960) of F if $F \cap M = \emptyset$ and dist(F, M) = 0.

PROPOSITION.

For a closed convex set $F \subseteq R^n$ and a linear subspace $L \subseteq R^n$, the following statements are equivalent: 1) No translate of L is an f-asymptote of F. 2) The orthogonal projection of F onto L^{\perp} is closed. 3) F + L is closed.

PROPOSITION.

Let $F \subseteq \mathbb{R}^n$ be an FW-set. Then F has no f-asymptotes. **PROPOSITION.**

Let $F \subseteq \mathbb{R}^n$ be an FW-set and $M \subseteq \mathbb{R}^m$ be an affine manifold.

Then $F \times M$ is an FW-set.

COROLLARY.

Let $F \subseteq \mathbb{R}^n$ be an FW-set and $M \subseteq \mathbb{R}^m$ be an affine manifold.

Then F + M is an FW-set.

PROPOSITION.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be an affine operator and let $F \subseteq T(\mathbb{R}^n)$ be an FW-set. Then $T^{-1}(F)$ is an FW-set, too.

cFW-SETS

F is a qFW-set if it is convex and the property holds for every quadratic function which is in addition quasiconvex on F.

F is a cFW-set if it is convex and the property holds for every quadratic function which is in addition convex on F.

PROPOSITION. cFW-sets are closed.

PROPOSITION.

Affine images of qFW-sets are qFW-sets.

Affine images of cFW-sets are cFW-sets.

PROPOSITION.

If the union of two qFW-sets is convex, then it is qFW, too.

If the union of two cFW-sets is convex, then it is cFW, too.

THEOREM.

Let $F \subseteq \mathbb{R}^n$ be convex.

Then the following statements are equivalent:

(i) Every polynomial which has at least one nonempty convex sub-level set on F and is bounded below on F attains its infimum on F.

(ii) F is qFW.

(iii) F is cFW.

(iv) F has no f-asymptotes.

(v) T(F) is closed for every affine mapping T.

(vi) P(F) is closed for every orthogonal projection P.

COROLLARY. A convex set $F \subseteq R^n$ is a cFW-set if and only if F + Lis closed for every linear subspace $L \subseteq R^n$.

PROPOSITION.

If the preimage of a cFW-set under a linear mapping is nonempty, then it is a cFW-set, too. PROOF.

If $T^{-1}(F)$ had an f-asymptote M, then T(M) would be an f-asymptote of F.

EXAMPLE. $F := \{(x, y) \in \mathbb{R}^2 : x^2 + \exp(-x^2) - y \leq 0\}$ is convex and closed.

 ${\cal F}$ does not have f-asymptotes.

$$q(x,y) := y - x^{2}$$

$$q(x,y) \ge \exp(-x^{2}) > 0 \text{ for every } (x,y) \in F$$

$$0 \le \inf_{(x,y)\in F} q(x,y) \le \inf_{x\in\mathbb{R}} q\left(x,x^{2} + \exp(-x^{2})\right)$$

$$= \inf_{x\in\mathbb{R}} \exp(-x^{2}) = 0$$

COROLLARY.

Any nonempty finite intersection of cFW-sets is again cFW.

COROLLARY.

Let $F_0 \subseteq \mathbb{R}^n$ be a cFW-set and let $f_1, ..., f_m$ be convex polynomials on F_0 such that

$$F := \{ x \in F_0 : f_i(x) \le 0, i = 1, ..., m \}$$

is nonempty.

Let f be a polynomial which is bounded below on Fand has at least one nonempty convex sub-level set on F.

Then f attains its infimum on F.

COROLLARY (Z.-Q. Luo, S. Zhang, 1999).

A nonempty convex region in \mathbb{R}^n defined by convex quadratic constraints is always cFW.

COROLLARY. If $F_1, ..., F_m$ are cFW-sets, then $F := F_1 \times ... \times F_m$ is cFW.

PROOF. Suppose $F_i \subset \mathbb{R}^{d_i}$. Then

$$F = \left(F_1 \times \mathbb{R}^{d_2} \times \cdots \times \mathbb{R}^{d_m}\right)$$

$$\cap \left(\mathbb{R}^{d_1} \times F_2 \times \mathbb{R}^{d_3} \times \cdots \times \mathbb{R}^{d_m}\right)$$

$$\cap \cdots$$

$$\cap \left(\mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_{m-1}} \times F_m\right).$$

EXAMPLE (Z.-Q. Luo, S. Zhang, 1999).
minimize
$$q(x) := x_1^2 - 2x_1x_2 + x_3x_4$$

subject to $c_1(x) := x_1^2 - x_3 \leq 0$
 $c_2(x) := x_2^2 - x_4 \leq 0$
 $x := (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$

$$F := \{x \in \mathbb{R}^4 : c_1(x) \le 0, c_2(x) \le 0\} \text{ is a cFW-set.}$$
$$\inf_{x \in F} q(x) = \inf \{x_1^2 - 2x_1x_2 + x_1^2x_2^2\}$$
$$= \inf \{x_1^2 + (1 - x_1x_2)^2\} - 1 = -1$$

 $q\left(x
ight)>-1$ for every $x\in F$

The sum of two FW-sets need not be FW: $F_1 \times F_2 = F_1 \times \{0\} + \{0\} \times F_2$

MOTZKIN SETS

 $F\subseteq \mathbb{R}^n$ closed

F is called Motzkin set (M-set) if there exists a compact set K and a closed convex cone D such that F = K + D.

$$co(F) = co(K + D) = co(K) + co(D) = co(K) + D$$

 $D = \mathbf{0}^+ co(F)$

EXAMPLE.

 $D:=\{(x,y,z)\in \mathbb{R}^3: x\geq 0, y\geq 0, xy-z^2\geq 0\}$ is a closed convex cone.

$$q(x, y, z) := x^{2} + (z - 1)^{2}$$

$$egin{aligned} q\left(rac{1}{k},rac{(k+1)^2}{k},1+rac{1}{k}
ight)&=rac{2}{k^2}
ightarrow 0\ \inf_{x\in D}q\left(x,y,z
ight)&=0\ q\left(x,y,z
ight)&>0\ ext{for every}\ (x,y,z)\in D \end{aligned}$$

EXAMPLE. $F := \left\{ (x, y, z) \in \mathbb{R}^3 : z \ge \left(x^2 + y^2 \right)^{\frac{1}{2}} \right\}$ is convex and closed.

$$q(x, y, z) := (x - 1)^2 - y + z$$

$$(x, y, z) \in F$$

$$\implies \text{ either } x \neq 1 \text{ or } z \ge \left(1 + y^2\right)^{\frac{1}{2}} > y$$

$$\implies q(x, y, z) > 0$$

$$q\left(1, k, \left(1 + k^2\right)^{\frac{1}{2}}\right) = \left(1 + k^2\right)^{\frac{1}{2}} - k \longrightarrow 0$$

THEOREM.

Let $F \subseteq \mathbb{R}^n$ be an M-set. Then the following statements are equivalent:

- (i) F is FW.
- (ii) F has no f-asymptotes.
- (iii) 0^+F is polyhedral.

PROOF (sketch).

(i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) uses Mirkil's Theorem.

THEOREM (H. Mirkil, 1957).

If a closed convex cone has all its 2-dimensional projections closed, then it is polyhedral. (iii) \implies (i) is based in the following facts: 1) If $F = C + 0^+ F$, with C compact and convex, and

$$q(x) := \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x,$$

then

$$\inf_{x\in F} q(x) = \inf_{y\in C} \left\{ q(y) + \inf_{z\in \mathbf{0}^+F} \left\{ y^{\mathsf{T}}Az + q(z) \right\} \right\}.$$

2) Let D be a polyhedral convex cone and define

$$f(c) := \inf_{x \in D} \left\{ c^{\mathsf{T}} x + \frac{1}{2} x^{\mathsf{T}} G x \right\}.$$

We assume that $x^{\mathsf{T}}Gx \ge 0$ for every $x \in D$. Then one has:

 $\mathsf{dom}(f) = \left\{ c : c^{\mathsf{T}} x \ge \mathbf{0} \ \forall x \in D \ \mathsf{s.t.} \ x^{\mathsf{T}} G x = \mathbf{0} \right\}.$

The right hand side of this equality is a polyhedral convex cone.

Consequently, f is continuous relative to dom(f).

$$F := \{ (x, y) \in \mathbb{R}^2 : x > 0, y > 0, xy \ge 1 \}$$

PROPOSITION.

For a closed convex cone $D \subseteq \mathbb{R}^n$ (with $n \ge 2$), the following statements are equivalent:

1) D is polyhedral.

2) C + D is a convex polyhedron for every convex polyhedron C.

3) L + D is closed for every (n - 2)-dimensional subspace L.

4) D has no (n-2)-dimensional f-asymptotes.

MOTZKIN FW-SETS

Motzkin FW-sets: F = K + DK compact, D polyhedral convex cone

THEOREM.

Any finite intersection of Motzkin FW-sets is a Motzkin FW-set, too.

PROPOSITION.

If the preimage of a Motzkin FW-set F under an affine mapping T is nonempty, it is a Motzkin FW-set, too. PROOF.

$$T^{-1}(F) = \left(T_{(KerT)^{\perp}}\right)^{-1} \left(F \cap R\left(T\right)\right) + KerT$$

EXAMPLE. $F := \left\{ (x_1, x_2, x_3) : x_3 \ge (x_1^2 + x_2^2)^{\frac{1}{2}} \right\}$ $T (x_1, x_2, x_3) := (1, x_2, x_3)$ $x_3 - x_2$ does not attain its infimum on $T^{-1}(F)$. $T^{-1}(F)$ is not a Motzkin set.

PARABOLIC SETS

THEOREM. (Z.-Q. Luo, S. Zhang, 1999).

Let ${\cal P}$ be a closed convex polyhedron and define

$$F:=\left\{x\in P: x^TQx+q^Tx+c\leq \mathbf{0}\right\},$$
 where $Q=Q^T\succeq \mathbf{0}.$

Then F is an FW-set.

EXAMPLE.

$$F := \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : (x_1 - 1)^2 + x_2^2 \le 1 \right\}$$

$$F = K + L$$

$$K := \left\{ (x_1, x_2, 0, 0) \in \mathbb{R}^4 : (x_1 - 1)^2 + x_2^2 \le 1 \right\}$$

$$L := \{0\} \times \{0\} \times \mathbb{R} \times \mathbb{R}$$

$$\mathcal{F} := \left\{ x \in F : x_3^2 \le x_4 \right\}$$

$$q(x_1, x_2, x_3, x_4) := x_1 x_4 - 2 x_2 x_3$$

$$q(x_1, x_2, x_3, x_4) \ge q(x_1, x_2, x_3, x_3^2) > -2 \text{ for every}$$

$$(x_1, x_2, x_3, x_4) \in \mathcal{F}$$

$$q(x_1, x_2, x_3, x_4^2) \rightarrow -2 \text{ for } x_2 := \left(1 - (x_1 - 1)^2\right)^{\frac{1}{2}}$$
and $x_3 := \frac{x_2}{x_1}$ as $x_1 \rightarrow 0^+$

 ${\cal F}$ is not an FW-set.

 ${\mathcal F}$ is a cFW-set.

$$\mathcal{F} = K' \times F'$$

$$K' := \left\{ (x_1, x_2) \in \mathbb{R}^2 : (x_1 - 1)^2 + x_2^2 \le 1 \right\}$$

$$F' := \left\{ (x_3, x_4) \in \mathbb{R}^2 : x_3^2 \le x_4 \right\}$$

$$\mathcal{F} = F \cap (\{0\} \times \{0\} \times F' + M)$$

$$M := \mathbb{R} \times \mathbb{R} \times \{0\} \times \{0\}$$

q-ASYMPTOTES

A nonempty closed set in \mathbb{R}^n F nonempty closed convex set in \mathbb{R}^n

A is said to be *asymptotic* to F if $A \cap F = \emptyset$ and dist(F, A) = 0.

$$Q := \{x \in \mathbb{R}^n : q(x) := \frac{1}{2}x^{\mathsf{T}}Ax + 2b^{\mathsf{T}}x + c = 0\}$$

is a *q*-asymptote of *F* if
 $F \cap Q = \emptyset$ and dist $(Q \times \{0\}, \{(x, q(x)) : x \in F\}) = 0$

Q is a q-asymptote of F

 $Q imes \{ \mathbf{0} \}$ is asymptotic to $graph\left(q_{|F}
ight)$

Q is a *q*-asymptote of $F \Rightarrow Q$ is asymptotic to F

EXAMPLE. $F := \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$ $Q := \{(x, y) \in \mathbb{R}^2 : q(x, y) := xy + 1 = 0\}$

Q is asymptotic to F.

 $q(x,y) \geq 1$ for every $(x,y) \in F$

dist $(Q \times \{0\}, \{((x, y), q(x, y)) : (x, y) \in F\}) = 1$ Q is not a q-asymptote of F.

THEOREM. A convex set F is FW if and only if it has no q-asymptotes.

F, Q be closed sets, $F \cap Q = \emptyset$ and dist(F, Q) = 0Q' closed set.

Q' is squeezed in between F and Q if: $F \cap Q' = \emptyset = Q \cap Q'$ and for every $x \in F$ and $y \in Q$ one has $[x, y] \cap Q' \neq \emptyset$. $Q_{\alpha} := \{ x \in \mathbb{R}^n : q(x) - \alpha = \mathbf{0} \}$

PROPOSITION.

Let F be a closed convex set. Then Q_0 is a q-asymptote of Fif and only if Q_0 is asymptotic to F and no Q_α can be squeezed in between F and Q_0 .

PROPOSITION.

Let F be a closed convex set in \mathbb{R}^n . Let $Q := \{x \in \mathbb{R}^n : q(x) = 0\}$ be a quadric. Suppose Q degenerates to an affine subspace. Then Q is a q-asymptote of Fif and only if it is an f-asymptote of F.

Moreover, for any f-asymptote M of F there exists a quadric representation

$$M := \{ x \in \mathbb{R}^n : q(x) = \mathbf{0} \},\$$

and then M is also a q-asymptote of F.

REFERENCES

M. Frank and P. WolfeAn algorithm for quadratic programmingNaval Research Logistics Quarterly 3 (1956), 95-110

H. MirkilNew characterizations of polyhedral conesCan. J. Math. 9 (1957), 1-4

V. Klee Asymptotes and projections of convex sets Math. Scand., 8 (1960), pp. 356–362

Z.-Q. Luo, S. ZhangOn extensions of the Frank-Wolfe theoremComput. Optim. Appl. 13 (1999), 87-110

J.E. Martínez-Legaz, D. Noll, W. Sosa Minimization of quadratic functions on convex sets without asymptotes

J. Convex Anal. 25 (2018), no. 2, 623-641.

J.E. Martínez-Legaz, D. Noll, W. Sosa Non-polyhedral extensions of the Frank and Wolfe Theorem arXiv:1805.03451v1