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1. Introduction and preliminaries

We consider the parameterized linear optimization problem:

P (c, a, b) : minimize c0x
subject to a0tx � bt, t 2 T

We assume that

x 2 Rn is the vector of decision variables
y0 denotes the transpose of y 2 Rn

c 2 Rn, (a, b) � (at, bt)t2T 2
�
Rn+1�T

Symbol (F) means "this result also holds for semi-infinite
problems, i.e. when T is infinite".
If T is compact Hausdorff, t 7! at 2 Rn and t 7! bt 2 R are
continuous on T, the problem P is called continuous.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

1. Introduction and preliminaries

We consider the parameterized linear optimization problem:

P (c, a, b) : minimize c0x
subject to a0tx � bt, t 2 T

We assume that

x 2 Rn is the vector of decision variables

y0 denotes the transpose of y 2 Rn

c 2 Rn, (a, b) � (at, bt)t2T 2
�
Rn+1�T

Symbol (F) means "this result also holds for semi-infinite
problems, i.e. when T is infinite".
If T is compact Hausdorff, t 7! at 2 Rn and t 7! bt 2 R are
continuous on T, the problem P is called continuous.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

1. Introduction and preliminaries

We consider the parameterized linear optimization problem:

P (c, a, b) : minimize c0x
subject to a0tx � bt, t 2 T

We assume that

x 2 Rn is the vector of decision variables
y0 denotes the transpose of y 2 Rn

c 2 Rn, (a, b) � (at, bt)t2T 2
�
Rn+1�T

Symbol (F) means "this result also holds for semi-infinite
problems, i.e. when T is infinite".
If T is compact Hausdorff, t 7! at 2 Rn and t 7! bt 2 R are
continuous on T, the problem P is called continuous.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

1. Introduction and preliminaries

We consider the parameterized linear optimization problem:

P (c, a, b) : minimize c0x
subject to a0tx � bt, t 2 T

We assume that

x 2 Rn is the vector of decision variables
y0 denotes the transpose of y 2 Rn

c 2 Rn, (a, b) � (at, bt)t2T 2
�
Rn+1�T

Symbol (F) means "this result also holds for semi-infinite
problems, i.e. when T is infinite".
If T is compact Hausdorff, t 7! at 2 Rn and t 7! bt 2 R are
continuous on T, the problem P is called continuous.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

1. Introduction and preliminaries

We consider the parameterized linear optimization problem:

P (c, a, b) : minimize c0x
subject to a0tx � bt, t 2 T

We assume that

x 2 Rn is the vector of decision variables
y0 denotes the transpose of y 2 Rn

c 2 Rn, (a, b) � (at, bt)t2T 2
�
Rn+1�T

Symbol (F) means "this result also holds for semi-infinite
problems, i.e. when T is infinite".
If T is compact Hausdorff, t 7! at 2 Rn and t 7! bt 2 R are
continuous on T, the problem P is called continuous.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

CANONICAL vs FULL PERTURBATIONS

Feasible set mappings, F :
�
Rn+1�T � Rn

F (a, b) :=
�

x 2 Rn : a0tx � bt, for all t 2 T
	

,

and Fa : RT � Rn

Fa (b) := F (a, b) .

Optimal set mappings, S : Rn �
�
Rn+1�T � Rn,

S (c, a, b) := fx 2 Rn j x is an optimal solution for P(c, a, b)g ,

and Sa : Rn �RT � Rn

Sa (c, b) := S (c, a, b) (canonical perturbations).
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Topology

The space of decision variables, Rn, is equipped with an
arbitrary norm, k�k .

The parameter space , Rn �
�
Rn+1�T , is endowed with the

supremum norm (a proper norm if P is continuous!)

k(c, a, b)k := max
�
kck� , supt2T k(at, bt)k

	
,

where:
k(at, bt)k = max fkatk� , jbtjg .

(Recall that kuk� := max
kxk�1

ju0xj).

For canonical perturbations, when a = a, Rn �RT is also
endowed with the corresponding supremum norm .
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q�order error bounds of funtions

Definition
Given the function f : X ! R[ f+∞g defined on a metric
space X, a point x̄ 2 [f � 0] and a number q > 0, we say that f
admits a q�order local error bound at x̄, if 9 κ � 0 and 9 a neighb.
U of x such that

d(x, [f � 0]) � κ[f (x)]q+, 8x 2 U. (1)

If q = 1, we say that f admits a local error bound at x̄.

The infimum of all κ in (1) is called the modulus of q-order error
bounds of f at x̄, and it is denoted by clmqf (x̄).
The absence of q-order error bounds corresponds to
clmqf (x̄) = +∞.
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Hölder calmness of mappings
X, Y metric spaces (distances in X and Y are denoted by d),

Definition
M : Y � X is q-order calm , q 2]0, 1], at (y, x) 2 gphM if 9U
neighb. of x, 9V neighb. of y, 9κ � 0 such that

d (x,M (y)) � κd (y, y)q , 8y 2 V, 8x 2 M (y) \U. (2)

M is calm if q = 1.
The infimum of all κ � 0 for which (2) holds is called the q-order
calmness modulus of M at (ȳ, x̄); it is

clmqM(ȳ, x̄) = lim sup
y!ȳ,

x!x̄,x2M(y)

d(x,M(ȳ))
d(y, ȳ)q

.

If clmqM(y, x) = +∞, M is not q�calm at (y, x).

The calmness of M at (y, x) is equivalent to the metric
subregularity of M�1 at (x, y).
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Calmness under canonical pertubations

Theorem (Robinson, 1981)
If M : Rm � Rn is polyhedral (gphM is the finite union of
polyhedral sets), then M is calm at any (y, x) 2 gphM.

Corollary

If T is finite, then Fa and Sa are calm at any element of their graphs.

Remark Sa is calm at any point of gphSa as
Karush-Kuhn-Tucker conditions allow us to express the graph
of Sa as the finite union of polyhedral sets. This is no longer the
case for S in the framework of perturbations of all data.
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What about the continuous problem P? For the continuous
system (a, b), consider the supremum function

s (x) := maxfa0tx� bt, t 2 Tg. (3)

For any x 2 Rn,

∂s (x) = convfat : t 2 T(a,b)(x)g,

where
T(a,b)(x) := ft 2 T : a0tx� bt = s (x)g.

Due to the continuity of s (�), x 2 bdFa(b) ) s (x) = 0.

Proposition

Fa is calm at (b, x) if and only if s has a local error bound at x; i.e.,
there exist κ � 0 and a neighb. U of x such that

d (x, [s � 0]) � κ [s (x)]+ , for all x 2 U.
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Antecedents

a) Zheng and Ng’03: Characterizations of local error bounds in a
more general context.
b) Henrion and Outrata’05: Criterion for calmness in the context
of nonlinear systems under some differentiability assumptions.
c) Klatte and Kummer’09: Calmness properties of certain finite
nonlinear systems in connection with the convergence of
algorithms.
d) Kruger, Ngai and Théra’10: Formula for the calmness modulus
in a more general context.
e) Henrion, Jourani and Outrata’02and Jourani’00: Subdifferential
approach to calmness/local error bounds.
f) In the ’finite’ framework, Klatte and Thiery’95 and Li’93 and
Li’94 proved several results about Hoffman constants.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

Theorem

If P is a continuous problem and x 2 bdFa(b), TFAE:

(i) Fa is calm at (b, x)
(ii) α := lim inf

x!x, s(x)>0
d� (0n, ∂s (x)) > 0

(iii) β := lim inf
x!x, s(x)>0

sup
u 6=x

[s (x)� [s (u)]+]+
d (x, u)

> 0

Moreover, we have

clmFa(b, x) = α�1 = β�1.

Remarks (i), (ii) comes from Azé and Corvellec’04 (Prop. 2.1 and
Th. 5.1); (i), (iii) from Fabian, Henrion, Kruger and Outrata’12.
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P satisfies the Abadie CQ (ACQ) around x 2 bdFa(b) if 9
neighb. U of x such that

N (Fa(b), x) = conefat : t 2 T(a,b)(x)g at any x 2 bdFa(b)\U,

where cone A is the convex cone generated by A.
P verifies the uniform dual boundedness condition (UDB
condition) around x 2 bdFa(b) if 9 M > 0 and a neighb. U
of x such that

conefat : t 2 T(a,b)(x)g\B� � [0, M]∂s (x) , 8x 2 bdFa(b)\U.

Theorem (CLPT’14 Th. 3)

Let x 2 bdFa(b). Then Fa is calm at (b, x) if and only if P satisfies
ACQ and UDB around x.

Remark This result is inspired in Zheng and Ng’03. ACQ and
UDB are independent properties.
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Calmness modulus of the feasible set mapping

Fix (a, b) 2
�
Rn+1�T , and associated with x 2 F (a, b), consider

the family of subsets in T(a,b)(x):

D (x) :=

8><>:D � T(a,b)(x)

�������
There exists d verifying :(
a
0
td = 1, t 2 D,

a
0
td < 1, t 2 T (x) nD

) 9>=>;
Theorem (CLPT’14, Ths. 4 and 5)

(i) If T is finite, clmFa(b, x) = max
D2D(x)

(d�(0n, convfat, t 2 Dg))�1

(ii) (F) clmF ((a, b), x) = (kxk+ 1) clmFa(b, x)

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

Calmness under full perturbations

Theorem (CLPT’14, Cor. 2 (F))
Let ((a, b), x) 2 gphF ; TFAE:
(i)F is calm at ((a, b), x);
(ii) Fa is calm at (b, x).

Theorem (CHaPT’16, Th. 4.1)

Assume that T is finite and S(c, a, b) = fxg . The following are
equivalent:
(i) S is calm at ((c, a, b), x);
(ii) Either Slater holds at (a, b) or F (a, b) = fxg;
(iii) 0n /2 bd conv

n
at, t 2 T(a,b)(x)

o
.

(Slater at (a, b) : there exists bx 2 Rn such that a
0
tbx < bt, t 2 T)
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Hölder calmness of the optimal set in convex SIP
Consider the following convex SIP problem:

P (c, b) : minimize f (x) + c0x
subject to gt(x) � bt, t 2 T,

where c, x 2 Rn, T is a compact set, f : Rn ! R and
gt : Rn ! R, t 2 T, are convex functions such that
(t, x) 7! gt(x) is continuous on T�Rn, and t 7! bt is
continuous on T.
Also now, the pair (c, b) 2 Rn � C(T, R) is the parameter to be
perturbed, and the parameter space Rn � C(T, R) is endowed
with the norm

k(c, b)k := maxfkck, kbk∞g,

where now Rn is equipped with the Euclidean norm k � k and
kbk∞ := maxt2T jbtj.
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We deal with the optimal set mapping

S : (c, b) 7! fx 2 Rn j x is optimal for P(c, b)g,

with (c, b) 2 Rn � C(T, R).
In the case that c is fixed, S reduces to the partial optimal
solution mapping Sc : C(T, R)� Rn given by

Sc(b) = S(c, b).

Now, the feasible set mapping is given by

F (b) := fx 2 Rn j gt(x) � bt, t 2 Tg,

and the set of active indices at x 2 F (b) by

Tb(x) := ft 2 T j gt(x) = btg.
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Definition
The problem P(c, b) satisfies the Slater constraint qualification if
there exists x̂ such that gt(x̂) < bt for all t 2 T.

The following result plays a crucial role in our analysis.

Proposition

Let (c̄, b̄) 2 Rn � C(T, R) and assume that P(c̄, b̄) satisfies the Slater
condition. Then x̄ 2 S(c̄, b̄) if and only if the Karush-Kuhn-Tucker
(KKT) conditions hold, i.e.,

x̄ 2 F (b̄) and � (∂f (x̄) + c̄)
\

cone

0@ [
t2Tb̄(x̄)

∂gt(x)

1A 6= ∅.

cone(X) is the conical convex hull of X; always contains 0n,
entailing cone(∅) = f0ng.
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We use the level set mapping L : R� C(T, R)� Rn

L(α, b) := fx 2 Rn j f (x) + c̄0x � α; gt(x) � bt, t 2 Tg

and the supremum function f̄ : Rn ! R

f̄ (x) := supff (x) + c̄0x�
�
f (x̄) + c̄0x

�
; gt(x)� b̄t, t 2 Tg.

With t0 /2 T, we define

T := T [ ft0g, gt0(x) := f (x) + c̄0x and b̄t0 := f (x̄) + c̄0x,

and obviously,

f̄ (x) = supfgt(x)� b̄t, t 2 Tg.

T is compact (as t0 is an isolated point in T), the functions
(t, x) 7! gt(x) is continuous on T�Rn, b 2 C(T, R).
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For x 2 Rn, the active set is

T(x) := ft 2 T : f̄ (x) = gt(x)� b̄tg,

and
∂f̄ (x) = conv

�[
t2T(x)∂gt(x)

�
. (4)

Since ((c̄, b̄), x̄) 2 gph(S),

S(c̄, b̄) =
�
f̄ = 0

�
=
�
f̄ � 0

�
= L(f (x̄) + hc̄, x̄i, b̄).

Observe that t0 2 T(x̄). Consequently 0n 2 ∂f (x), and by (4)

0n = ∑p
i=1 λiui,

with ui 2 ∂gti(x), fti, i = 1, 2, . . . , pg � T(x), λi > 0 and
∑

p
i=1 λi = 1.

If P(c̄, b̄) satisfies the Slater condition, t0 must be one of the
indices involved in the sum above.
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The following lemma provides a uniform boundedness result.

Lemma

Let ((c̄, b̄), x̄) 2 gph(S) and assume that P(c̄, b̄) satisfies Slater.
Then, there exist M > 0 and neighb.’s U of x̄ and V of (c̄, b̄) such
that, for all (c, b) 2 V and all x 2 S(c, b) \U, we have

�(∂f (x) + c)
T
[0, M] conv

�[
t2Tb(x)

∂gt(x)
�
6= ∅. (5)
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Our approach strongly relies on the following proposition:

Proposition

Let ((c̄, b̄), x̄) 2 gph(S). Then the following statements are
equivalent:

(i) L is q -order calm at ((f (x̄) + hc̄, x̄i, b̄), x̄) 2 gph(L);
(ii) lim inf

x!x̄,f̄ (x)#0
f̄ (x)q�1d(0, ∂f̄ (x)) > 0.

Moreover,

clmq L((f (x̄) + hc̄, x̄i, b̄), x̄) =

 
lim inf

x!x̄,f̄ (x)#0
f̄ (x)q�1d(0, ∂f̄ (x)

!�1

.
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The following theorem constitutes a Hölder convex counterpart
of Theorem 3.1 in Cánovas-Et-Al’14 for the linear case.

Theorem

Let x̄ 2 S(c̄, b̄) and assume that P(c̄, b̄) satisfies the Slater condition.
Consider the following statements:

(i) S is q-order calm at ((c̄, b̄), x̄);
(ii) Sc̄ is q-order calm at (b̄, x̄);
(iii) L is q-order calm at ((f (x̄) + hc̄, x̄i, b̄), x̄);
(iv) f̄ has a q-order local error bound at x̄.
Then (iii), (iv)) (i)) (ii) hold.

In addition, if f and gt are linear, then (i), (ii), (iii), (iv).
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In the convex setting, (ii)) (iii) could fail:

P (0, 0) : minimize x2

subject to x � 0,

Take c̄ = 0, b̄ = 0, and x̄ = 0. Then Sc̄(b̄) = f0g and
f̄ (x) = supfx2, xg.
a) Given q 2 (1/2, 1], it is easy to verify that
lim infx!x̄,f̄ (x)#0 f̄ (x)q�1d(0, ∂f̄ (x)) = 0 and, by Proposition 3, L
is not q-order calm at ((0, 0), 0) 2 gph(L).
b) On the other hand, we have

Sc̄(b) = minf0, bg, for all b 2 (�1, 1). (6)

Since kbk � kbk 2
3 8b 2 (�1, 1), it follows from (6)

d(x,Sc̄(b̄)) � kb� b̄k 2
3 8x 2 Sc̄(b) \ (�1, 1) and b 2 (�1, 1),

(7)
i,e., Sc̄ is 2/3-order calm at (0, 0).
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Definition
The Extended Nürnberger Condition (ENC) is satisfied at
((c̄, b̄), x̄) 2 gph(S) if

P(c̄, b̄) satisfies Slater and @ D � Tb̄(x̄) with jDj < n

such that � (∂f (x̄) + c̄)
\

cone

 [
t2D

∂gt(x)

!
6= ∅.

The parameter c can be fixed when ENC is fulfilled!

Theorem

Let ((c̄, b̄), x̄) 2 gph(S) and suppose that ENC is satisfied at
((c̄, b̄), x̄). Then

clmq S((c̄, b̄), x̄) = clmq Sc̄(b̄, x̄).
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Next we consider a weaker condition yielding a lower estimate
for clmqS((c̄, b̄), x̄).
We associate with (b, x) 2 gphSc̄ the family of KKT index sets

Mb(x) :=
�

D � Tb(x)
���� �(∂f (x) + c)

T
cone (

S
t2D ∂gt(x)) 6= ∅

and D is minimal for the inclusion order

�
To any D 2 Mb̄(x̄), we associate the function fD : Rn ! R

fD(x) := supfgt(x)� b̄t, t 2 T; �gt(x) + b̄t, t 2 Dg.

Theorem

Let S(c̄, b̄) = fx̄g and assume that P(c̄, b̄) satisfies Slater. Then

clmq S((c̄, b̄), x̄) �

0@ inf
D2Mb̄(x̄)

lim inf
x!x̄

fD(x)>0

fD(x)q�1d(0, ∂fD(x))

1A�1

.
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Finally, we will consider the linear counterpart of P(c, b);
namely, we will always assume that f = 0 and gt(x) = a0tx for
all t 2 T therein, where t 7! at 2 Rn is continuous on T.

Proposition

Let S(c̄, b̄) = fx̄g and assume that P(c̄, b̄) satisfies the Slater
condition. Then the following estimates hold

clmq S((c̄, b̄), x̄) � clmq Sc̄(b̄, x̄)

�

0@ inf
D2Mb̄(x̄)

lim inf
x!x̄

fD(x)>0

fD(x)q�1d(0, ∂fD(x))

1A�1

= sup
D2Mb̄(x̄)

�
clmqfD(x)

�
.
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Also in the linear programming setting, and with q = 1 :

Theorem
(i) (CHeLP’16, Cor. 4.1)

clmS((c̄, b̄), x̄) = sup
D2Mb̄(x̄)

(clm fD(x)) .

(ii) (CHePT’16, §5) Assume that Slater holds and S(c̄,a, b̄) = fxg.
Then

clmS((c, a, b), x) = (kxk+ 1) clmSa((c, b), x),

if kck� is small enough (critical objective size).
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First results on the calmness of S , under uniquenes of optimal
solution:

Cánovas, Kruger, López, Parra, Théra, SIOPT, 2014
Cánovas, Hantoute, Parra, Toledo, Math. Program., 2016

More results:

Cánovas, Henrion, López, Parra, JOTA, 2016
Cánovas, Henrion, Parra, Toledo, Set-Valued V. A., 2016
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Applications

On the convergence of certain algorithms

Cánovas, Hantoute, Parra, Toledo, Math. Program. (2015).
A descent method (by Klatte and Kummer) in LP
A regularization method (by Kadrani, Dussault and
Benchakroun) for linear MPCC’s

Cánovas, Hall, López, Parra, Optimization, 2018
Interior point methods

Application in robust optimization

Cánovas, Henrion, López, Parra, Stud. Syst. Decis.
Control, 142, Springer 2018

Calmness constants for uncertain linear inequality systems
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A uniform approach to Hölder calmness of
subdifferentials

Consider the set-valued mapping S : Γ�Rn � Rn given
by

S (f , x) := ∂f (x) ,

where Γ represents the family of all finite-valued convex
functions f : Rn �! R.

Given x0 2 Rn, our aim is to quantify the stability of S
around x0 and uniformly with respect to f ; i.e. involving
pairs of functions f1 and f2, close enough to each other
(with respect to the standard uniformity for the topology
of uniform convergence on bounded subsets).
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Next we present some preliminary results.

Proposition

(Upper semicontinuity of S) Let (f0, x0) 2 Γ�Rn. Given ε > 0,
there exists δ > 0 such that

∂f (x) � ∂f0 (x0) + εB;

provided that f 2 Γ satisfies

dα (f , f0) := sup
z2x0+αB

jf (z)� f0 (z)j � δ,

and kx� x0k � δ.
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The metric of the uniform convergence on compact subsets of
Rn is

ρ(f , g) :=
∞

∑
k=1

1
2k min fdk(f , g), 1g, (8)

where

dk(f , g) = maxfjf (x)� g(x)j : kx� x0k � kg

and x0 is a fixed point.
Metric ρ is not really helpful, and it is easier to work with dα.
Moreover, for each ε > 0, there exist k 2 N and δ > 0 such that
ρ(f , g) < ε for each pair of functions (f , g) satisfying
dk(f , g) < δ.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne



Calmness modulus of the feasible set mapping in linear SIP
Hölder calmness of the optimal set in convex SIP

The following result follows from Cor. 4.3 in Aragón-Geoffroy’14
and Fenchel’s equality.

Proposition

Let (f0, x0) 2 Γ�Rn and u0 2 ∂f0 (x0) be given. Then ∂f0 is calm at
(x0, u0) if and only if there exist a neighb. U of u0 and a positive
constant c such that

f �0 (u) + f0 (x0) � u0x0 + cd (u, ∂f (x0))
2 for all u 2 U. (9)

Specifically, if ∂f0 is calm at (x0, u0) with constant κ, then (9) holds
for all c < 1/(4κ); conversely, if (9) holds with constant c, then ∂f is
calm at (x0, u0) with constant 1/c.
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The next result is Theorem 5.1 in Beer-Cánovas-L-Parra’2018:

Theorem
Let (f0, x0) 2 Γ�Rn and fix α > 0. Assume that ∂f0 is calm at
(x0, u) for any u 2 ∂f0 (x0) . Then, there exist κ > 0 and 0 < δ0 � 1
such that for any (f , x) 2 Γ�Rn verifying

d ((f , x) , (f0, x0)) := max fdα (f , f0) , kx� x0kg � δ0

we have

d (u,S (f0, x0)) � κ1

q
d ((f , x) , (f0, x0)) for all u 2 S (f , x) .

In other words, S is (1/2)-Hölder calm at (f0, x0).

Here we use a pseudometric in the image space.
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