Calmness in convex semi-infinite optimization. Modulus estimates Dedicated to Prof. Alex Kruger

Marco A. López

Alicante University

1 Calmness modulus of the feasible set mapping in linear SIP

We consider the parameterized *linear optimization problem*:

 $\begin{array}{ll} P(c,a,b): & \text{minimize} & c'x \\ & \text{subject to} & a'_t x \leq b_t, \ t \in T \end{array}$

We consider the parameterized *linear optimization problem*:

$$\frac{P(c,a,b)}{\text{subject to}} : \text{minimize} \quad \frac{c'x}{a_t'x \le b_t, \ t \in T}$$

We assume that

• $x \in \mathbb{R}^n$ is the vector of decision variables

We consider the parameterized *linear optimization problem*:

$$\frac{P(c,a,b)}{\text{subject to}} : \text{minimize} \quad \frac{c'x}{a_t'x \le b_t, \ t \in T}$$

We assume that

- $x \in \mathbb{R}^n$ is the vector of decision variables
- y' denotes the transpose of $y \in \mathbb{R}^n$

We consider the parameterized *linear optimization problem*:

$$\frac{P(c,a,b)}{\text{subject to}} : \begin{array}{l} \text{minimize} \quad c'x \\ \text{subject to} \quad a'_t x \leq b_t, \ t \in T \end{array}$$

We assume that

- $x \in \mathbb{R}^n$ is the vector of decision variables
- y' denotes the transpose of $y \in \mathbb{R}^n$
- $c \in \mathbb{R}^n$, $(a, b) \equiv (a_t, b_t)_{t \in T} \in (\mathbb{R}^{n+1})^T$

We consider the parameterized *linear optimization problem*:

$$\begin{array}{ll} P\left(c,a,b\right): & \text{minimize} & c'x \\ & \text{subject to} & a_t'x \leq b_t, \ t \in T \end{array}$$

We assume that

- $x \in \mathbb{R}^n$ is the vector of decision variables
- y' denotes the transpose of $y \in \mathbb{R}^n$
- $c \in \mathbb{R}^n$, $(a, b) \equiv (a_t, b_t)_{t \in T} \in (\mathbb{R}^{n+1})^T$

Symbol (\bigstar) means "this result also holds for *semi-infinite* problems, i.e. when *T* is infinite". If *T* is compact Hausdorff, $t \mapsto a_t \in \mathbb{R}^n$ and $t \mapsto b_t \in \mathbb{R}$ are continuous on *T*, the problem *P* is called *continuous*.

CANONICAL vs FULL PERTURBATIONS

• Feasible set mappings, $\mathcal{F}: (\mathbb{R}^{n+1})^T \rightrightarrows \mathbb{R}^n$

 $\mathcal{F}(a,b) := \{x \in \mathbb{R}^n : a'_t x \le b_t, \text{ for all } t \in T\},\$

and $\mathcal{F}_{\overline{a}}: \mathbb{R}^T \rightrightarrows \mathbb{R}^n$

 $\mathcal{F}_{\overline{a}}(b):=\mathcal{F}\left(\overline{a},b\right).$

CANONICAL vs FULL PERTURBATIONS

• Feasible set mappings, $\mathcal{F}: (\mathbb{R}^{n+1})^T \rightrightarrows \mathbb{R}^n$

 $\mathcal{F}(a,b) := \left\{ x \in \mathbb{R}^n : a'_t x \le b_t, \text{ for all } t \in T \right\},$

and $\mathcal{F}_{\overline{a}}: \mathbb{R}^T \rightrightarrows \mathbb{R}^n$

$$\mathcal{F}_{\overline{a}}(b) := \mathcal{F}(\overline{a}, b).$$

• **Optimal set mappings**, $S : \mathbb{R}^n \times (\mathbb{R}^{n+1})^T \rightrightarrows \mathbb{R}^n$,

 $\mathcal{S}(c,a,b) := \{x \in \mathbb{R}^n \mid x \text{ is an optimal solution for } P(c,a,b)\},\$ and $\mathcal{S}_{\overline{a}} : \mathbb{R}^n \times \mathbb{R}^T \rightrightarrows \mathbb{R}^n$

 $S_{\overline{a}}(c,b) := S(c,\overline{a},b)$ (canonical perturbations).

Calmness modulus of the feasible set mapping in linear SIP Hölder calmness of the optimal set in convex SIP

Topology

• The space of decision variables, \mathbb{R}^n , is equipped with an arbitrary norm, $\|\cdot\|$.

Topology

- The space of decision variables, \mathbb{R}^n , is equipped with an arbitrary norm, $\|\cdot\|$.
- The parameter space, $\mathbb{R}^n \times (\mathbb{R}^{n+1})^T$, is endowed with the supremum norm (a proper norm if *P* is continuous!)

$$||(c,a,b)|| := \max \{ ||c||_*, \sup_{t \in T} ||(a_t,b_t)|| \},\$$

Topology

- The space of decision variables, \mathbb{R}^n , is equipped with an arbitrary norm, $\|\cdot\|$.
- The parameter space, $\mathbb{R}^n \times (\mathbb{R}^{n+1})^T$, is endowed with the supremum norm (a proper norm if *P* is continuous!)

$$\|(c,a,b)\| := \max \{ \|c\|_*, \sup_{t\in T} \|(a_t,b_t)\| \},\$$

where:

$$||(a_t, b_t)|| = \max\{||a_t||_*, |b_t|\}.$$

(Recall that $||u||_* := \max_{||x|| \le 1} |u'x|$).

Topology

- The space of decision variables, \mathbb{R}^n , is equipped with an arbitrary norm, $\|\cdot\|$.
- The parameter space, $\mathbb{R}^n \times (\mathbb{R}^{n+1})^T$, is endowed with the supremum norm (a proper norm if *P* is continuous!)

$$\|(c,a,b)\| := \max \{ \|c\|_*, \sup_{t\in T} \|(a_t,b_t)\| \},\$$

where:

$$||(a_t, b_t)|| = \max\{||a_t||_*, |b_t|\}.$$

(Recall that $||u||_* := \max_{||x|| \le 1} |u'x|$).

• For canonical perturbations, when $a = \overline{a}$, $\mathbb{R}^n \times \mathbb{R}^T$ is also endowed with the corresponding supremum norm.

Calmness modulus of the feasible set mapping in linear SIP Hölder calmness of the optimal set in convex SIP

q-order error bounds of funtions

Definition

Given the function $f : X \to \mathbb{R} \cup \{+\infty\}$ defined on a metric space *X*, a point $\overline{x} \in [f \leq 0]$ and a number q > 0, we say that f admits a *q*-order local error bound at \overline{x} , if $\exists \kappa \geq 0$ and \exists a neighb. *U* of \overline{x} such that

$$d(x, [f \le 0]) \le \kappa[f(x)]_+^q, \quad \forall x \in U.$$
(1)

If q = 1, we say that f admits a *local error bound* at \bar{x} .

The infimum of all κ in (1) is called the *modulus of q-order error* bounds of f at \bar{x} , and it is denoted by $\operatorname{clm}_q f(\bar{x})$. The absence of q-order error bounds corresponds to $\operatorname{clm}_q f(\bar{x}) = +\infty$.

Hölder calmness of mappings

X, *Y* metric spaces (distances in *X* and *Y* are denoted by *d*),

Definition

 $\mathcal{M} : Y \rightrightarrows X$ is *q*-order calm, $q \in]0, 1]$, at $(\overline{y}, \overline{x}) \in \operatorname{gph} \mathcal{M}$ if $\exists U$ neighb. of $\overline{x}, \exists V$ neighb. of $\overline{y}, \exists \kappa \geq 0$ such that

 $d(x, \mathcal{M}(\overline{y})) \leq \kappa d(y, \overline{y})^{q}, \ \forall y \in V, \ \forall x \in \mathcal{M}(y) \cap U.$ (2)

 \mathcal{M} is *calm* if q = 1. The infimum of all $\kappa \ge 0$ for which (2) holds is called the *q*-order *calmness modulus* of \mathcal{M} at (\bar{y}, \bar{x}) ; it is

$$\operatorname{clm}_{q} \mathcal{M}(\bar{y}, \bar{x}) = \limsup_{\substack{y \to \bar{y}, \\ x \to \bar{x}, x \in \mathcal{M}(y)}} \frac{d(x, \mathcal{M}(\bar{y}))}{d(y, \bar{y})^{q}}.$$

If $\operatorname{clm}_q \mathcal{M}(\overline{y}, \overline{x}) = +\infty$, \mathcal{M} is not q-calm at $(\overline{y}, \overline{x})$.

Calmness under canonical pertubations

Theorem (Robinson, 1981)

If $\mathcal{M} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ is polyhedral (gph \mathcal{M} is the finite union of polyhedral sets), then \mathcal{M} is calm at any $(\overline{y}, \overline{x}) \in \operatorname{gph} \mathcal{M}$.

Calmness under canonical pertubations

Theorem (Robinson, 1981)

If $\mathcal{M} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ is polyhedral (gph \mathcal{M} is the finite union of polyhedral sets), then \mathcal{M} is calm at any $(\overline{y}, \overline{x}) \in \operatorname{gph} \mathcal{M}$.

Corollary

If **T** *is finite, then* $\mathcal{F}_{\overline{a}}$ *and* $\mathcal{S}_{\overline{a}}$ *are calm at any element of their graphs.*

Remark $S_{\overline{a}}$ is calm at any point of gph $S_{\overline{a}}$ as Karush-Kuhn-Tucker conditions allow us to express the graph of $S_{\overline{a}}$ as the finite union of polyhedral sets. This is no longer the case for S in the framework of perturbations of all data. Calmness modulus of the feasible set mapping in linear SIP Hölder calmness of the optimal set in convex SIP

What about the continuous problem *P*? For the continuous system $(\overline{a}, \overline{b})$, consider the *supremum function*

 $\overline{s}(x) := \max\{\overline{a}'_t x - \overline{b}_t, t \in T\}.$

(3)

What about the continuous problem *P*? For the continuous system $(\overline{a}, \overline{b})$, consider the *supremum function*

$$\overline{s}(x) := \max\{\overline{a}_t'x - \overline{b}_t, t \in T\}.$$
(3)

For any $x \in \mathbb{R}^n$,

$$\partial \overline{s}(x) = \operatorname{conv}\{\overline{a}_t : t \in T_{(\overline{a},\overline{b})}(x)\},\$$

where

$$T_{(\overline{a},\overline{b})}(x) := \{t \in T : \overline{a}'_t x - \overline{b}_t = \overline{s}(x)\}.$$

Due to the continuity of $\overline{s}(\cdot)$, $\overline{x} \in \text{bd } \mathcal{F}_{\overline{a}}(\overline{b}) \Rightarrow \overline{s}(\overline{x}) = 0$.

What about the continuous problem *P*? For the continuous system $(\overline{a}, \overline{b})$, consider the *supremum function*

$$\overline{s}(\mathbf{x}) := \max\{\overline{a}'_t \mathbf{x} - \overline{b}_t, \ t \in T\}.$$
(3)

For any $x \in \mathbb{R}^n$,

$$\partial \overline{s}(x) = \operatorname{conv}\{\overline{a}_t : t \in T_{(\overline{a},\overline{b})}(x)\},\$$

where

$$T_{(\overline{a},\overline{b})}(x) := \{t \in T : \overline{a}'_t x - \overline{b}_t = \overline{s}(x)\}.$$

Due to the continuity of $\overline{s}(\cdot)$, $\overline{x} \in \text{bd } \mathcal{F}_{\overline{a}}(\overline{b}) \Rightarrow \overline{s}(\overline{x}) = 0$.

Proposition

 $\mathcal{F}_{\overline{a}}$ is calm at $(\overline{b}, \overline{x})$ if and only if \overline{s} has a local error bound at \overline{x} ; i.e., there exist $\kappa \ge 0$ and a neighb. U of \overline{x} such that

 $d(x, [\overline{s} \leq 0]) \leq \kappa [\overline{s}(x)]_{+}$, for all $x \in U$.

Antecedents

a) *Zheng and Ng'03*: Characterizations of local error bounds in a more general context.

b) *Henrion and Outrata'05*: Criterion for calmness in the context of nonlinear systems under some differentiability assumptions. c) *Klatte and Kummer'09*: Calmness properties of certain finite nonlinear systems in connection with the convergence of algorithms.

d) *Kruger, Ngai and Théra*'10: Formula for the calmness modulus in a more general context.

e) *Henrion, Jourani and Outrata*'02and *Jourani*'00: Subdifferential approach to calmness/local error bounds.

f) In the 'finite' framework, *Klatte and Thiery'95* and *Li'93* and *Li'94* proved several results about Hoffman constants.

Theorem

If *P* is a continuous problem and $\overline{x} \in bd\mathcal{F}_{\overline{a}}(\overline{b})$, TFAE: (i) $\mathcal{F}_{\overline{a}}$ is calm at $(\overline{b}, \overline{x})$ (ii) $\alpha := \liminf_{x \to \overline{x}, \ \overline{s}(x) > 0} d_* (0_n, \partial \overline{s}(x)) > 0$ (iii) $\beta := \liminf_{x \to \overline{x}, \ \overline{s}(x) > 0} \sup_{u \neq x} \frac{[\overline{s}(x) - [\overline{s}(u)]_+]_+}{d(x, u)} > 0$ Moreover, we have

$$\mathrm{clm}\mathcal{F}_{\overline{a}}(\overline{b},\overline{x})=\alpha^{-1}=\beta^{-1}.$$

Remarks (*i*) \Leftrightarrow (*ii*) comes from Azé and Corvellec'04 (Prop. 2.1 and Th. 5.1); (*i*) \Leftrightarrow (*iii*) from Fabian, Henrion, Kruger and Outrata'12.

Calmness modulus of the feasible set mapping in linear SIP Hölder calmness of the optimal set in convex SIP

P satisfies the *Abadie CQ* (ACQ) *around* x̄ ∈ bd*F_a(b̄)* if ∃ neighb. *U* of x̄ such that

 $\mathcal{N}(\mathcal{F}_{\overline{a}}(\overline{b}), x) = \overline{\operatorname{cone}}\{\overline{a}_t : t \in T_{(\overline{a}, \overline{b})}(x)\} \text{ at any } x \in \operatorname{bd}\mathcal{F}_{\overline{a}}(\overline{b}) \cap U,$

where **cone** *A* is the convex cone generated by *A*.

• *P* verifies the *uniform dual boundedness condition* (UDB condition) *around* $\overline{x} \in bd\mathcal{F}_{\overline{a}}(\overline{b})$ if $\exists M > 0$ and a neighb. *U* of \overline{x} such that

 $\operatorname{cone}\{\overline{a}_t: t \in T_{(\overline{a},\overline{b})}(x)\} \cap \mathbb{B}_* \subset [0,M]\partial \overline{s}(x), \ \forall x \in \operatorname{bd}\mathcal{F}_{\overline{a}}(\overline{b}) \cap U.$

Calmness modulus of the feasible set mapping in linear SIP Hölder calmness of the optimal set in convex SIP

• *P* satisfies the *Abadie CQ* (ACQ) *around* $\overline{x} \in bd\mathcal{F}_{\overline{a}}(\overline{b})$ if \exists neighb. *U* of \overline{x} such that

 $\mathcal{N}(\mathcal{F}_{\overline{a}}(\overline{b}), x) = \overline{\operatorname{cone}}\{\overline{a}_t : t \in T_{(\overline{a}, \overline{b})}(x)\} \text{ at any } x \in \operatorname{bd}\mathcal{F}_{\overline{a}}(\overline{b}) \cap U,$

where **cone** *A* is the convex cone generated by *A*.

• *P* verifies the *uniform dual boundedness condition* (UDB condition) *around* $\overline{x} \in bd\mathcal{F}_{\overline{a}}(\overline{b})$ if $\exists M > 0$ and a neighb. *U* of \overline{x} such that

 $\operatorname{cone}\{\overline{a}_{t}: t \in T_{(\overline{a},\overline{b})}(x)\} \cap \mathbb{B}_{*} \subset [0,M]\partial \overline{s}(x), \forall x \in \operatorname{bd}\mathcal{F}_{\overline{a}}(\overline{b}) \cap U.$

Theorem (CLPT'14 Th. 3)

Let $\overline{x} \in bd\mathcal{F}_{\overline{a}}(\overline{b})$. Then $\mathcal{F}_{\overline{a}}$ is calm at $(\overline{b}, \overline{x})$ if and only if P satisfies ACQ and UDB around \overline{x} .

Remark This result is inspired in *Zheng and Ng*'03. ACQ and UDB are independent properties.

WoMBaT 2018, 29-30 November 2018 Deakin University, Melbourne

Calmness modulus of the feasible set mapping

Fix $(\bar{a}, \bar{b}) \in (\mathbb{R}^{n+1})^T$, and associated with $\bar{x} \in \mathcal{F}(\bar{a}, \bar{b})$, consider the family of subsets in $T_{(\bar{a}, \bar{b})}(\bar{x})$:

$$\mathcal{D}(\overline{x}) := \left\{ D \subset T_{(\overline{a},\overline{b})}(\overline{x}) \middle| \begin{array}{l} \text{There exists } d \text{ verifying :} \\ \left\{ \begin{array}{l} \overline{a}'_t d = 1, & t \in D, \\ \overline{a}'_t d < 1, & t \in T(\overline{x}) \setminus D \end{array} \right\} \end{array} \right\}$$

Theorem (CLPT'14, Ths. 4 and 5)

(*i*) If T is finite, $\operatorname{clm} \mathcal{F}_{\overline{a}}(\overline{b}, \overline{x}) = \max_{D \in \mathcal{D}(\overline{x})} (d_*(0_n, \operatorname{conv}\{\overline{a}_t, t \in D\}))^{-1}$ (*ii*) (\bigstar) $\operatorname{clm} \mathcal{F}((\overline{a}, \overline{b}), \overline{x}) = (\|\overline{x}\| + 1) \operatorname{clm} \mathcal{F}_{\overline{a}}(\overline{b}, \overline{x})$

Calmness under full perturbations

Theorem (CLPT'14, Cor. 2 (★))

Let $((\bar{a}, \bar{b}), \bar{x}) \in \operatorname{gph} \mathcal{F}$; TFAE: (i) \mathcal{F} is calm at $((\bar{a}, \bar{b}), \bar{x})$; (ii) $\mathcal{F}_{\bar{a}}$ is calm at (\bar{b}, \bar{x}) .

Calmness under full perturbations

Theorem (CLPT'14, Cor. 2 (★))

Let $((\overline{a}, \overline{b}), \overline{x}) \in \operatorname{gph} \mathcal{F}$; TFAE: (i) \mathcal{F} is calm at $((\overline{a}, \overline{b}), \overline{x})$; (ii) $\mathcal{F}_{\overline{a}}$ is calm at $(\overline{b}, \overline{x})$.

Theorem (CHaPT'16, Th. 4.1)

Assume that T is finite and $S(\bar{c}, \bar{a}, \bar{b}) = \{\bar{x}\}$. The following are equivalent: (i) S is calm at $((\bar{c}, \bar{a}, \bar{b}), \bar{x})$; (ii) Either Slater holds at (\bar{a}, \bar{b}) or $\mathcal{F}(\bar{a}, \bar{b}) = \{\bar{x}\}$; (iii) $0_n \notin bd \operatorname{conv} \{\bar{a}_t, t \in T_{(\bar{a}, \bar{b})}(\bar{x})\}$.

(Slater at $(\overline{a}, \overline{b})$: there exists $\widehat{x} \in \mathbb{R}^n$ such that $\overline{a}'_t \widehat{x} < \overline{b}_t, t \in T$)

Hölder calmness of the optimal set in convex SIP Consider the following *convex SIP problem*:

$$P(c, b)$$
: minimize $f(x) + c'x$
subject to $g_t(x) \le b_t, t \in T$,

where $c, x \in \mathbb{R}^n$, *T* is a **compact set**, $f : \mathbb{R}^n \to \mathbb{R}$ and $g_t : \mathbb{R}^n \to \mathbb{R}$, $t \in T$, are **convex functions** such that $(t, x) \mapsto g_t(x)$ is **continuous** on $T \times \mathbb{R}^n$, and $t \mapsto b_t$ is **continuous** on *T*.

Also now, the pair $(c, b) \in \mathbb{R}^n \times \mathcal{C}(T, \mathbb{R})$ is the parameter to be perturbed, and the parameter space $\mathbb{R}^n \times \mathcal{C}(T, \mathbb{R})$ is endowed with the norm

$$\|(c,b)\| := \max\{\|c\|, \|b\|_{\infty}\},\$$

where **now** \mathbb{R}^n is equipped with the **Euclidean norm** $\|\cdot\|$ and $\|b\|_{\infty} := \max_{t \in T} |b_t|$.

We deal with the optimal set mapping

$$S: (c,b) \mapsto \{x \in \mathbb{R}^n \mid x \text{ is optimal for } P(c,b)\},\$$

with $(c, b) \in \mathbb{R}^n \times \mathcal{C}(T, \mathbb{R})$. In the case that \overline{c} is fixed, S reduces to the partial optimal solution mapping $S_{\overline{c}} : \mathcal{C}(T, \mathbb{R}) \rightrightarrows \mathbb{R}^n$ given by

 $\mathcal{S}_{\overline{c}}(b) = \mathcal{S}(\overline{c},b).$

Now, the feasible set mapping is given by

 $\mathcal{F}(b) := \{ x \in \mathbb{R}^n \mid g_t(x) \le b_t, t \in T \},\$

and the set of active indices at $x \in \mathcal{F}(b)$ by

$$T_b(x) := \{t \in T \mid g_t(x) = b_t\}.$$

Definition

The problem P(c, b) satisfies the *Slater constraint qualification* if there exists \hat{x} such that $g_t(\hat{x}) < b_t$ for all $t \in T$.

The following result plays a crucial role in our analysis.

Proposition

Let $(\bar{c}, \bar{b}) \in \mathbb{R}^n \times C(T, \mathbb{R})$ and assume that $P(\bar{c}, \bar{b})$ satisfies the Slater condition. Then $\bar{x} \in S(\bar{c}, \bar{b})$ if and only if the Karush-Kuhn-Tucker (KKT) conditions hold, i.e.,

$$\bar{x} \in \mathcal{F}(\bar{b})$$
 and $-(\partial f(\bar{x}) + \bar{c}) \bigcap \operatorname{cone} \left(\bigcup_{t \in T_{\bar{b}}(\bar{x})} \partial g_t(\bar{x}) \right) \neq \emptyset.$

cone(*X*) is the conical convex hull of *X*; always contains 0_n , entailing cone(\emptyset) = { 0_n }.

WoMBaT 2018, 29-30 November 2018

Deakin University, Melbourne

We use the *level set mapping* $\mathcal{L} : \mathbb{R} \times \mathcal{C}(T, \mathbb{R}) \rightrightarrows \mathbb{R}^n$

 $\mathcal{L}(\alpha, b) := \{ x \in \mathbb{R}^n \mid f(x) + \bar{c}' x \le \alpha; g_t(x) \le b_t, t \in T \}$

and the supremum function $\overline{f} : \mathbb{R}^n \to \mathbb{R}$

$$\overline{f}(x) := \sup\{f(x) + \overline{c}'x - (f(\overline{x}) + \overline{c}'\overline{x}) ; g_t(x) - \overline{b}_t, t \in T\}.$$

With $t_0 \notin T$, we define

$$\overline{T} := T \cup \{t_0\}, g_{t_0}(x) := f(x) + \overline{c}'x \text{ and } \overline{b}_{t_0} := f(\overline{x}) + \overline{c}'\overline{x},$$

and obviously,

$$\overline{f}(x) = \sup\{g_t(x) - \overline{b}_t, t \in \overline{T}\}.$$

 \overline{T} is compact (as t_0 is an isolated point in \overline{T}), the functions $(t, x) \mapsto g_t(x)$ is continuous on $\overline{T} \times \mathbb{R}^n$, $b \in C(\overline{T}, \mathbb{R})$.

For $x \in \mathbb{R}^n$, the active set is

$$\overline{T}(x) := \{t \in \overline{T} : \overline{f}(x) = g_t(x) - \overline{b}_t\},$$

and

$$\partial \overline{f}(x) = \operatorname{conv}\left(\bigcup_{t \in \overline{T}(x)} \partial g_t(x)\right).$$
 (4)

Since $((\bar{c}, \bar{b}), \bar{x}) \in \operatorname{gph}(\mathcal{S})$,

$$\mathcal{S}(\bar{c},\bar{b}) = [\bar{f}=0] = [\bar{f} \le 0] = \mathcal{L}(f(\bar{x}) + \langle \bar{c},\bar{x} \rangle, \bar{b}).$$

Observe that $t_0 \in \overline{T}(\overline{x})$. Consequently $0_n \in \partial \overline{f}(\overline{x})$, and by (4)

$$0_n=\sum_{i=1}^p\lambda_iu^i,$$

with $u^i \in \partial g_{t_i}(\overline{x})$, $\{t_i, i = 1, 2, ..., p\} \subset \overline{T}(\overline{x})$, $\lambda_i > 0$ and $\sum_{i=1}^p \lambda_i = 1$. If $P(\overline{c}, \overline{b})$ satisfies the Slater condition, t_0 must be one of the indices involved in the sum above. The following lemma provides a uniform boundedness result.

Lemma

Let $((\bar{c}, \bar{b}), \bar{x}) \in \operatorname{gph}(S)$ and assume that $P(\bar{c}, \bar{b})$ satisfies Slater. Then, there exist M > 0 and neighb.'s U of \bar{x} and V of (\bar{c}, \bar{b}) such that, for all $(c, b) \in V$ and all $x \in S(c, b) \cap U$, we have

$$-(\partial f(x) + c) \cap [0, M] \operatorname{conv} \left(\bigcup_{t \in T_b(x)} \partial g_t(x) \right) \neq \emptyset.$$
 (5)

Our approach strongly relies on the following proposition:

Proposition

Let $((\bar{c}, \bar{b}), \bar{x}) \in \text{gph}(S)$ *. Then the following statements are equivalent:*

- (*i*) \mathcal{L} is q-order calm at $((f(\bar{x}) + \langle \bar{c}, \bar{x} \rangle, \bar{b}), \bar{x}) \in \operatorname{gph}(\mathcal{L});$
- (*ii*) $\liminf_{x\to \bar{x},\bar{f}(x)\downarrow 0} \bar{f}(x)^{q-1} d(0,\partial \bar{f}(x)) > 0.$

Moreover,

$$\operatorname{clm}_{q} \mathcal{L}((f(\bar{x}) + \langle \bar{c}, \bar{x} \rangle, \bar{b}), \bar{x}) = \left(\liminf_{x \to \bar{x}, \bar{f}(x) \downarrow 0} \bar{f}(x)^{q-1} d(0, \partial \bar{f}(x)) \right)^{-1}.$$

The following theorem constitutes a Hölder convex counterpart of Theorem 3.1 in *Cánovas-Et-Al'14* for the linear case.

Theorem

Let $\bar{x} \in S(\bar{c}, \bar{b})$ and assume that $P(\bar{c}, \bar{b})$ satisfies the Slater condition. Consider the following statements:

(i) S is q-order calm at $((\bar{c}, \bar{b}), \bar{x})$; (ii) $S_{\bar{c}}$ is q-order calm at (\bar{b}, \bar{x}) ; (iii) \mathcal{L} is q-order calm at $((f(\bar{x}) + \langle \bar{c}, \bar{x} \rangle, \bar{b}), \bar{x})$; (iv) \bar{f} has a q-order local error bound at \bar{x} . Then (iii) \Leftrightarrow (iv) \Rightarrow (i) \Rightarrow (ii) hold.

In addition, if f and g_t are linear, then $(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv)$.

In the convex setting, $(ii) \Rightarrow (iii)$ could fail:

P(0,0): minimize x^2 subject to $x \le 0$,

Take $\bar{c} = 0$, $\bar{b} = 0$, and $\bar{x} = 0$. Then $S_{\bar{c}}(\bar{b}) = \{0\}$ and $\bar{f}(x) = \sup\{x^2, x\}$. a) Given $q \in (1/2, 1]$, it is easy to verify that $\liminf_{x \to \bar{x}, \bar{f}(x) \downarrow 0} \bar{f}(x)^{q-1} d(0, \partial \bar{f}(x)) = 0$ and, by Proposition 3, \mathcal{L} is not q-order calm at $((0, 0), 0) \in \operatorname{gph}(\mathcal{L})$. b) On the other hand, we have

$$\mathcal{S}_{\bar{c}}(b) = \min\{0, b\}, \text{ for all } b \in (-1, 1).$$
(6)

Since $||b|| \le ||b||^{\frac{2}{3}} \forall b \in (-1, 1)$, it follows from (6)

 $d(x, \mathcal{S}_{\bar{c}}(\bar{b})) \leq \|b - \bar{b}\|^{\frac{2}{3}} \quad \forall x \in \mathcal{S}_{\bar{c}}(b) \cap (-1, 1) \text{ and } b \in (-1, 1),$

i,e., $S_{\bar{c}}$ is 2/3-order calm at (0,0).

(7)

Definition

The *Extended Nürnberger Condition* (*ENC*) is satisfied at $((\bar{c}, \bar{b}), \bar{x}) \in \text{gph}(S)$ if

 $P(\bar{c},\bar{b}) \text{ satisfies Slater and } \nexists D \subset T_{\bar{b}}(\bar{x}) \text{ with } |D| < n$ such that $-(\partial f(\bar{x}) + \bar{c}) \bigcap \operatorname{cone} \left(\bigcup_{t \in D} \partial g_t(\bar{x})\right) \neq \emptyset.$

The parameter *c* can be fixed when ENC is fulfilled!

Theorem

Let $((\bar{c}, \bar{b}), \bar{x}) \in \operatorname{gph}(S)$ and suppose that ENC is satisfied at $((\bar{c}, \bar{b}), \bar{x})$. Then

$$\operatorname{clm}_{\operatorname{q}} \mathcal{S}((\bar{c}, \bar{b}), \bar{x}) = \operatorname{clm}_{\operatorname{q}} \mathcal{S}_{\bar{c}}(\bar{b}, \bar{x}).$$

Next we consider a weaker condition yielding a lower estimate for $\operatorname{clm}_q \mathcal{S}((\bar{c}, \bar{b}), \bar{x})$. We associate with $(b, x) \in \operatorname{gph} \mathcal{S}_{\bar{c}}$ the family of KKT index sets $\mathcal{M}_b(x) := \left\{ D \subset T_b(x) \middle| \begin{array}{c} -(\partial f(x) + c) \cap \operatorname{cone} (\bigcup_{t \in D} \partial g_t(x)) \neq \emptyset \\ \text{and } D \text{ is minimal for the inclusion order} \end{array} \right\}$ To any $D \in \mathcal{M}_{\bar{b}}(\bar{x})$, we associate the function $f_D : \mathbb{R}^n \to \mathbb{R}$ $f_D(x) := \sup\{g_t(x) - \bar{b}_t, t \in T; -g_t(x) + \bar{b}_t, t \in D\}.$

Theorem

Let $S(\bar{c}, \bar{b}) = {\bar{x}}$ *and assume that* $P(\bar{c}, \bar{b})$ *satisfies Slater. Then*

$$\operatorname{clm}_{q} \mathcal{S}((\bar{c}, \bar{b}), \bar{x}) \geq \left(\inf_{D \in \mathcal{M}_{\bar{b}}(\bar{x})} \liminf_{\substack{x \to \bar{x} \\ f_{D}(x) > 0}} f_{D}(x)^{q-1} d(0, \partial f_{D}(x)) \right)^{-1}$$

Finally, we will consider the linear counterpart of P(c, b); namely, we will always assume that f = 0 and $g_t(x) = a'_t x$ for all $t \in T$ therein, where $t \mapsto a_t \in \mathbb{R}^n$ is continuous on T.

Proposition

Let $S(\bar{c}, \bar{b}) = {\bar{x}}$ *and assume that* $P(\bar{c}, \bar{b})$ *satisfies the Slater condition. Then the following estimates hold*

$$\begin{split} \operatorname{clm}_{\mathbf{q}} \mathcal{S}((\bar{c}, \bar{b}), \bar{x}) &\geq \operatorname{clm}_{\mathbf{q}} \mathcal{S}_{\bar{c}}(\bar{b}, \bar{x}) \\ &\geq \left(\inf_{D \in \mathcal{M}_{\bar{b}}(\bar{x})} \liminf_{\substack{x \to \bar{x} \\ f_D(x) > 0}} f_D(x)^{q-1} d(0, \partial f_D(x)) \right)^{-1} \\ &= \sup_{D \in \mathcal{M}_{\bar{b}}(\bar{x})} \left(\operatorname{clm}_{\mathbf{q}} f_D(\bar{x}) \right). \end{split}$$

Also in the linear programming setting, and with q = 1:

Theorem

(*i*) (CHeLP'16, Cor. 4.1)

$$\operatorname{clm} \mathcal{S}((\bar{c}, \bar{b}), \bar{x}) = \sup_{D \in \mathcal{M}_{\bar{b}}(\bar{x})} \left(\operatorname{clm} f_D(\bar{x}) \right).$$

(*ii*) (CHePT'16, §5) Assume that Slater holds and $S(\bar{c},\bar{a},\bar{b}) = \{\bar{x}\}$. Then

 $\operatorname{clm}\mathcal{S}((\bar{c},\bar{a},\bar{b}),\bar{x}) = (\|\bar{x}\|+1)\operatorname{clm}\mathcal{S}_{\bar{a}}((\bar{c},\bar{b}),\bar{x}),$

if $\|\bar{c}\|_*$ *is small enough (critical objective size).*

First results on the calmness of S, under uniquenes of optimal solution:

- Cánovas, Kruger, López, Parra, Théra, SIOPT, 2014
- Cánovas, Hantoute, Parra, Toledo, Math. Program., 2016

First results on the calmness of S, under uniquenes of optimal solution:

- Cánovas, Kruger, López, Parra, Théra, SIOPT, 2014
- Cánovas, Hantoute, Parra, Toledo, Math. Program., 2016

More results:

- Cánovas, Henrion, López, Parra, JOTA, 2016
- Cánovas, Henrion, Parra, Toledo, Set-Valued V. A., 2016

Applications

On the convergence of certain algorithms

• Cánovas, Hantoute, Parra, Toledo, Math. Program. (2015).

- A descent method (by Klatte and Kummer) in LP
- A regularization method (by Kadrani, Dussault and Benchakroun) for linear MPCC's
- Cánovas, Hall, López, Parra, Optimization, 2018
 - Interior point methods

Applications

On the convergence of certain algorithms

• Cánovas, Hantoute, Parra, Toledo, Math. Program. (2015).

- A descent method (by Klatte and Kummer) in LP
- A regularization method (by Kadrani, Dussault and Benchakroun) for linear MPCC's
- Cánovas, Hall, López, Parra, Optimization, 2018
 - Interior point methods

Application in robust optimization

- Cánovas, Henrion, López, Parra, Stud. Syst. Decis. Control, 142, Springer 2018
 - Calmness constants for uncertain linear inequality systems

A uniform approach to Hölder calmness of subdifferentials

Consider the set-valued mapping S : Γ × ℝⁿ ⇒ ℝⁿ given by

 $\mathcal{S}\left(f,x\right):=\partial f\left(x\right),$

where Γ represents the family of all finite-valued convex functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}$.

A uniform approach to Hölder calmness of subdifferentials

• Consider the set-valued mapping $S : \Gamma \times \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ given by

 $\mathcal{S}(f,x):=\partial f(x)$,

where Γ represents the family of all finite-valued convex functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}$.

• Given $x_0 \in \mathbb{R}^n$, our aim is to quantify the *stability* of *S* around x_0 and *uniformly* with respect to *f*; i.e. involving pairs of functions f_1 and f_2 , close enough to each other (with respect to the standard uniformity for the topology of uniform convergence on bounded subsets).

Next we present some preliminary results.

Proposition

(Upper semicontinuity of S) Let $(f_0, x_0) \in \Gamma \times \mathbb{R}^n$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that

 $\partial f(x) \subset \partial f_0(x_0) + \varepsilon \mathbb{B};$

provided that $f \in \Gamma$ satisfies

$$d_{\alpha}(f,f_{0}):=\sup_{z\in x_{0}+\alpha\mathbb{B}}\left|f\left(z\right)-f_{0}\left(z\right)\right|\leq\delta,$$

and $||x - x_0|| \leq \delta$.

The metric of the uniform convergence on compact subsets of \mathbb{R}^n is

$$\rho(f,g) := \sum_{k=1}^{\infty} \frac{1}{2^k} \min \{ d_k(f,g), 1 \},$$
(8)

where

$$d_k(f,g) = \max\{|f(x) - g(x)| : ||x - x_0|| \le k\}$$

and x_0 is a fixed point.

Metric ρ is not really helpful, and it is easier to work with d_{α} . Moreover, for each $\varepsilon > 0$, there exist $k \in \mathbb{N}$ and $\delta > 0$ such that $\rho(f,g) < \varepsilon$ for each pair of functions (f,g) satisfying $d_k(f,g) < \delta$.

The following result follows from Cor. 4.3 in *Aragón-Geoffroy'14* and Fenchel's equality.

Proposition

Let $(f_0, x_0) \in \Gamma \times \mathbb{R}^n$ and $u_0 \in \partial f_0(x_0)$ be given. Then ∂f_0 is calm at (x_0, u_0) if and only if there exist a neighb. U of u_0 and a positive constant *c* such that

 $f_0^*(u) + f_0(x_0) \ge u'x_0 + cd(u, \partial f(x_0))^2 \text{ for all } u \in U.$ (9)

Specifically, if ∂f_0 is calm at (x_0, u_0) with constant κ , then (9) holds for all $c < 1/(4\kappa)$; conversely, if (9) holds with constant c, then ∂f is calm at (x_0, u_0) with constant 1/c.

The next result is Theorem 5.1 in Beer-Cánovas-L-Parra'2018:

Theorem

Let $(f_0, x_0) \in \Gamma \times \mathbb{R}^n$ and fix $\alpha > 0$. Assume that ∂f_0 is calm at (x_0, u) for any $u \in \partial f_0(x_0)$. Then, there exist $\kappa > 0$ and $0 < \delta_0 \le 1$ such that for any $(f, x) \in \Gamma \times \mathbb{R}^n$ verifying

 $d((f, x), (f_0, x_0)) := \max \{ d_{\alpha}(f, f_0), \|x - x_0\| \} \le \delta_0$

we have

 $d(u, \mathcal{S}(f_0, x_0)) \leq \kappa_1 \sqrt{d((f, x), (f_0, x_0))}$ for all $u \in \mathcal{S}(f, x)$.

In other words, S is (1/2)-Hölder calm at (f_0, x_0) .

Here we use a pseudometric in the image space.

References

- Beer, G. M.J. Cánovas, M.J., López, M.A., Parra, J.: A uniform approach to Hölder calmness of subdifferentials, submitted.
- Cánovas, M. J., Hall, J., López, M.A., Parra, J.: Calmness of partially perturbed linear systems with applications to interior point methods, Optimization, published online 21/09/2018, DOI: 10.1080/02331934.2018.1523403.
- Cánovas, M. J., Hantoute, A., Parra, J., Toledo, F.J.: Calmness modulus of fully perturbed linear programs. Math. Program. Ser. A, 158, 267-290 (2016).
- Cánovas, M. J., Henrion R., López, M.A., Parra, J., Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming. J. Optim. Theory Appl., 169, 925-952 (2016).

- Cánovas, M. J., Henrion R., Parra, J., Toledo, F.J.: Critical objective size and calmness modulus in linear programming. Set-Valued Var. Anal., 24, 565-579 (2016).
- Cánovas, M. J., Henrion R., López, M.A., Parra, J., Indexation strategies and calmness constants for uncertain linear inequality systems, The mathematics of the uncertain, 831–843, Stud. Syst. Decis. Control, 142, Springer, Cham, 2018.
- Cánovas, M. J., Kruger, A.Y., López, M.A., Parra, J., Thera, M.A.: Calmness modulus of linear semi-infinite programs. SIAM J. Optim. 24, 29–48 (2014).
- Cánovas, M. J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var. Anal. 22, 375–389 (2014).

Antecedents

- D. AZÉ, J.-N. CORVELLEC, Characterizations of error bounds for lower semicontinuous functions on metric spaces, ESAIM Control Optim. Calc. Var. 10 (2004), pp. 409-425.
- M. FABIAN, R. HENRION, A. Y. KRUGER, J. OUTRATA, About error bounds in metric spaces. Operations Research Proceedings 2011. Selected paper of the Int. Conf. Operations Reserach (OR 2011), Zurich, Switzerland. Springer-Verlag, Berlin (2012), 33-38.
- R. HENRION, A. JOURANI, J. OUTRATA, On the calmness of a class of multifunctions, SIAM J. Optim., 13 (2002), 603-618.
- R. HENRION, D. KLATTE, Regularity and stability in nonlinear semi-infinite optimization; Semi-Infinite Programming, R. Reemtsen and J.-J. Rückmann (Eds.), Kluwer Academic Publishers, 1998.

- R. HENRION, J. OUTRATA, Calmness of constraint systems with applications, Math. Program. 104B (2005), 437-464.
- A. JOURANI, Hoffman's error bound, local controllability, and sensitivity analysis, SIAM J. Control Optim. 38 (2000), 947–970.
- D. KLATTE, B. KUMMER, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications, Nonconvex Optim. Appl. 60, Kluwer Academic, Dordrecht, The Netherlands, 2002.
- D. KLATTE, B. KUMMER, Optimization methods and stability of inclusions in Banach spaces, Math. Program. B 117 (2009), pp. 305-330.
- D, KLATTE, G. THIERE, Error Bounds for Solutions of Linear Equations and Inequalities, Mathematical Methods of Operations Research, 41 (1995), 191-214.

- A. KRUGER, H. VAN NGAI, M. THÉRA, Stability of error bounds for convex constraint systems in Banach spaces, SIAM J. Optim. 20 (2010), 3280-3296.
- W. LI, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program, Linear Algebra Appl. 187 (1993), 15–40.
- W. LI, Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32 (1994), 140–153.
- S. M. ROBINSON, Some continuity properties of polyhedral multifunctions. Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Math. Programming Stud. No. 14 (1981), 206–214.
- X.Y. ZHENG, K.F. NG, Metric regularity and constraint qualifications for convex inequalities on Banach spaces, SIAM J. Optim. 14 (2003), pp. 757-772.