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Application: Disaster management

Figure: Hospitals.



Formulation and difficulties

Introduce binary variables: xij = {0, 1}. xij = 1 if location i is
covered by hospital j .
Convenient, natural, but not so easy to solve. It is much easier to
solve problems where the values of the variables are not restricted
to integers.
Mixed-Integer Linear programming problems. What can we do?

I Reformulate it differently.

I Cluster the locations to have smaller size data.

There is a better way.



Transportation Problem
Goods are produced at m factories (sources)

S1, . . . ,Sm

and sold at n markets (destinations):
D1, . . . ,Dn.

The supply available at source Si is si ≥ 0 units, the demand at
destination Dj is dj ≥ 0 units and the transportation cost of one
unit from Si to Dj is cij ≥ 0. We have to identify which sources
should supply which destinations to minimise total transportation
costs. Let xij be the number of units to be sent from Si to Dj .
Then the corresponding optimisation problem can be formulated as
follows:

min
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij ≤ si , i = 1, . . . ,m;
m∑
i=1

xij ≥ dj , j = 1, . . . , n;

xij ≥ 0, i , j = 1, . . . , n.



Transportation problem: integer solution

It is well known that if all supplies and demands are integers, then
there exists an optimal solution xij , which is integer. This is
important for many applications where the units (for example,
computers, cars, people) can not be split. In general, integer and
mixed-integer programming problems are much harder to solve
than linear programming problems. It is also well known that the
simplex method applied to a transportation problem, terminates at
an optimal solution that is also integer.
This can be proved, for example, by demonstrating that the
constraint matrix is totally unimodular.



Integer programming

A comprehensive overview on integer programming: Alexander
Schrijver (1986). Theorem 19.3 of this book (p. 268) covers the
conditions when the vertices of the feasible sets are integers and
therefore an optimal solution found at a vertex is integer. In this
paper, we only use conditions (i), (iii) and (iv) of the theorem
(originally proved by Hoffman and Kruskal (1956) and Ghouila
(1962). A simplified version of this theorem, formulated for this
study, is as follows (next slide).



Theorem

Theorem
Let A be a matrix with entries {0, 1,−1}. Then the following are
equivalent:

1. matrix A is totally unimodular, that is each square submatrix
of A has determinant 0, 1 or −1;

2. for all integral vectors a, b, c and d the polyhedron
{x |c ≤ x ≤ d , a ≤ Ax ≤ b}

has only integral vertices;

3. each collection of columns of A can be split into two parts so
that the sum of the columns in one part minus the sum of the
columns in the other part is a vector with entries {0, 1,−1};



More results

The first condition of Theorem 1 is usually used as a definition for
totally unimodular matrices. The class of totally unimodular
matrices is closed under a number of operations. We need the
following ones:

I transposition;

I multiplication a row (column) by −1.

Also, matrix A is totally unimodal if and only if matrix [IA] (where
I is an identity matrix of the corresponding dimension) is totally
unimodular.



Comsumable resources
It is enough to think about incident points as “Markets’’, while the
processing centres are “Factories’’. The transportation costs are
“processing and transportation time’’.
The feasible set (without sign constraints and integer requirement):

−In −In −In . . . −In
en 0n 0n . . . 0n
0n en 0n . . . 0n
0n 0n en . . . 0n
...

...
...

. . .
...

0n 0n 0n . . . en


X ≤ b, (1)

where
I b ∈ R(m+n) represents the corresponding demands and

supplies and therefore b is integral;
I X ∈ Rmn is the vector of decision variables;
I In is an identity matrix of size m;
I en = (1, 1, . . . , 1) ∈ Rn; 0n ∈ Rn = (0, 0, . . . , 0);
I the system matrix A ∈ R(n+m)×(mn).



Consumable: Theorem

Theorem
The system matrix A from (1) is totally unimodular.

Proof: Consider matrix B obtained from AT by multiplying the
first n columns of AT by −1. Matrix A is totally modular if and
only if matrix B is totally unimodular.
Assign the first n columns of B to part I and the remaining columns
to part II and assume that one or more columns may be removed
from the total collection of columns. The sum of the columns in
part I is an (mn)-dimensional vector S1 whose components are 0 or
1. The sum of the columns in part I is an (mn)-dimensional
vector S2 whose components are 0 or 1. Therefore the components
of S1 − S2 are 0, 1 or −1 and hence, by Theorem 1, we conclude
that matrices B and A are totally unimodular and all the vertices
of the feasible set have integer coordinates.
�
An optimal integer solution to this problem can be found by
applying the simplex method.



Non-consumable
In the case of non-consumable resources, the problem can also be
formulated as an integer programming problem, where some of the
summation constraints from a classical transportation problem
constraints are replaced with maximisation. A mixed-integer
formulation for the case of non-consumable resources is as follows

min
m∑
i=1

n∑
j=1

cijxij (2)

subject to
m∑
i=1

xij ≥ dj , j = 1, . . . , n; (3)

max
j=1,...,n

xij ≤ si , i = 1, . . . ,m; (4)

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m, (5)

xij are integers, i = 1, . . . ,m, j = 1, . . . , n, (6)

where di , i = 1, . . . ,m are incident point demands and
sj , j = 1, . . . , n are processing centre capacities.



Non-consumable: LP
A relaxation of this problem, obtained by removing the last
constraint (6), can be formulated as an LPP by replacing
constraints (4) with equivalent systems of linear inequalities:

xij ≤ sj , j = 1, . . . , n, i = 1, . . . ,m. (7)

The feasible set of this problem can be formulated as follows
(without sign constraints and integer requirement):[

−In −In −In . . . −In
Imn

]
X ≤ b, (8)

where

I b ∈ R(n(m+1)) represents the corresponding demands and
supplies and therefore b is integral;

I X ∈ Rmn is the vector of decision variables;

I In is an identity matrix of size n;

I Imn is an identity matrix of size mn;

I the system matrix A ∈ Rn(m+1)×(mn).



Non-consumable: Theorem

Theorem
The system matrix A from (15) is totally unimodular.

Proof: A is totally unimodular if and only if matrix
B =

[
In In In . . . In

]
(9)

is totally unimodular and matrix B is totally unimodular if and only
if In is totally unimodular: one can assign any collection of columns
of In to part I and the remaining columns to part II. The difference
of the corresponding columns sums contains 1 and −1 as the
components.

�
Therefore, similar to the case of consumable resources, we can
reduce an integer linear programming problem to an LPP whose
vertices are integral.



k-medoid or k-median

In this application, the distance matrix between all the incident
points is given. The goal is to select k points in such a way that,
after assigning all the remaining points to the nearest selected
point (cluster centre), the total sum of distances between the
points and centres is minimal. Each cluster centre is a relief centre,
whose optimal location (selection among the incident points) is the
objective. In this application, we assume that the demand of the
incident points can be covered regardless of the allocation, since
the main objective is to minimise the total distance. This kind of
clustering is called k-medoid, was first proposed by Kaufman and
Rousseeuw.



Relief centres

Assume that there are n demand points in total and the distance
matrix

D = {dij}, i = 1, . . . , n, j = 1, . . . , n.

It is easy to see that this matrix is symmetric and its main diagonal
consists of zeros. The goal is to select k points as relief centres.
The decision variables are binary:

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n

and yi ∈ {0, 1}, i = 1, . . . , n. Variable yi is 1 if incident point i is
treated as a relief centre, otherwise, this variable is zero. Variable
xij is 1 if incident point i was assigned to point j .



Formulation
The corresponding optimisation problem is as follows:

min
n∑

i=1

n∑
j=1

dijxij (10)

subject to
n∑

i=1

xij = 1, j = 1, . . . , n; (11)

xij ≤ yi , i , j = 1, . . . , n; (12)
n∑

i=1

yi = k ; (13)

xij , yi ∈ {0, 1}, i , j = 1, . . . , n. (14)

Constraints (11) ensure that each incident point is assigned to a
single relief centre. Constraints (12) ensure that an incident
point i can only be assigned to an incident point j if this point is
also a relief centre. Finally, constraint (13) ensures that exactly k
points are selected as relief centres.



k-medoid: Theorem

Theorem
All the vertices of the feasible set in k-medoid method have integer
coordinates.

Proof: The set of constraints contains (n + 1) equalities and
n2 + n inequalities (not counting sign constraints and integer
requirements). Use these equalities to reduce the number of
variables and obtain a simpler constraint matrix A.



Theorem: cont

Then the feasible set is as follows (without sign constraints and
integer requirement):

. . . en en . . . en
I(n−1)n . . . −en 0n . . . 0n

. . . 0n −en . . . 0n
−In −In . . . −In . . . 0n 0n . . . −en

X ≤ b,

(15)
where

I b ∈ R(n2−1) contains integral numbers only (1, −1, 0 or k);

I X ∈ Rn2−1 is the vector of decision variables;

I en = (1, 1, . . . , 1)T ∈ Rn;

I In is an identity matrix of size n;

I I(n−1)n is an identity matrix of size (n − 1)n;

I the system matrix A ∈ Rn2×(n2−1).



Theorem: cont

Matrix A contains n blocks of rows (n rows in each block). Add
the first (n − 1) blocks to the final block of rows (keeping the
same order of rows in each block). By doing this, the obtained
right hand side vector remains integer, while the last block of rows
consists of zeros. If the problem is feasible (that is k ≥ 1), the
final block of rows can be removed. Then the remaining system
matrix is

B =
[
In(n−1)C

]
, (16)

where

C =


en en en . . . en en
−en 0n 0n . . . 0n 0n
0n −en 0n . . . 0n 0n
0n 0n 0n . . . −en 0n

 ,

where en = (1, 1, . . . , 1)T ∈ Rn and 0n = (0, 0, . . . , 0)T ∈ Rn,
C ∈ Rn(n−1)×n−1.



Theorem: cont

To complete the proof, it is enough to show that matrix C is
totally unimodular. Indeed, for any collection of m columns in C
(m ≤ n), the columns can be split into two parts: it is enough to
assign any (m − 1)/2 columns (when m is odd) or m/2 columns
(when m is even) to one of the parts and the remaining columns in
the other part. Then the sum of the columns in part I minus the
sum of the columns in part II contains 1, −1 or 0.

�
Therefore, it is enough to apply the simplex method to solve this
problem and obtain an integer optimal solution.



Has someone discovered it before?
Note that Theorem 4 is an important result, since it allows one to
avoid integer solvers when applying k-medoid method. This results
is of interest of cluster analysis and allocation and therefore has
many other potential applications.
To our best knowledge, there is no result in the literature
confirming that all the vertices of the linear relaxations of
k-medoid formulations are integers. One relevant study (Relax, no
need to round: integrality of clustering formulations)
conducts a comprehensive numerical study on k-means and
k-medoid, where most experimental results confirm that the
relaxation produce integer (or nearly integer) results: “LP
relaxation remains integral with high probability’’. In the same
paper, the authors talk about “generically unique solutions’’, since
“no constraint is parallel to the objective function ’’.
In our paper, we provide an analytical proof that the vertices are
integral and therefore the classical implementation of the simplex
method always terminates at an integer solution and therefore the
corresponding problems can be solved efficiently.



Computational experiments, difficulties and discussions

I RELAX, NO NEED TO ROUND: INTEGRALITY OF
CLUSTERING FORMULATIONS

I Disaster management.

I Signal processing.

How can you confirm that the Simplex method is implemented in
the classicall way?


