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Basic facts about Voronoi diagrams

Let T ⊂ Rn be a finite set. The Voronoi cell of s ∈ T is

VT (s) =

{
x ∈ Rn : dist(x, s) ≤ min

t∈T\{s}
dist(x, t)

}
.

Voronoi cells are used in computer graphics, crystallography, fa-

cility location, and other areas including school catchment areas.

First recorded use in [René Descartes, Principia philosophiae, 1644].

[G.L. Dirichlet. Über die reduktion der positiven quadratischen formen mid

drei unbestimmten ganzen zahlen, 1850]

[M.G. Voronoi. Nouvelles applications des paramètres continus à la théorie

des formes quadratiques, 1908]

http://www.schoolcatchment.com.au/?page_id=825




Every polyhedral set is a Voronoi cell



Higher order (multipoint) Voronoi cells
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Higher order (multipoint) Voronoi cells

Higher order cells are utilized in a numerical technique for smooth-

ing point clouds from experimental data, for detecting and rec-

tifying coverage problems in wireless sensor networks, to analyze

coalitions in the US supreme court voting decisions and a k-

nearest neighbor problem in spatial networks.



Higher order cells are polyhedral

VT (S) :=
{
x ∈ Rn : maxs∈S dist(x, s) ≤ mint∈T\S dist(x, t)

}
Proposition 1. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . Then VT (S) is the intersection of

|S|(|T | − |S|) closed halfspaces:

VT (S) =
⋂
s∈S
t∈T\S

{
x ∈ Rn : 〈t− s, x〉 ≤

1

2

(
‖t‖2 − ‖s‖2

)}
.



Empty cells

Theorem 2. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . Then VT (S) = ∅ iff(
0n
−1

)
∈ cone

{(
t− s

‖t‖2 − ‖s‖2

)
, s ∈ S, t ∈ T \ S

}
.

Corollary 3. For a finite subset T of Rn we have

VT (s) 6= ∅ ∀s ∈ T.

Moreover VT (T \ {t}) 6= ∅ iff t is an extreme point (vertex) of

conv T .

Corollary 4. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . If (conv S) ∩ (T \ S) 6= ∅, then

VT (S) = ∅.



Empty cells

Example 5. Let s1 = (−1,0), s2 = (1,0), t = (0,0).

VT (S) =
{

(x1, x2) : x1 ≤ −
1

2
, x1 ≥

1

2

}
= ∅.



Bounded cells

Theorem 6. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . Then VT (S) is bounded iff

cone {t− s, s ∈ S, t ∈ T \ S} = Rn.

It follows from Theorem 6 that if n ≥ 2 and |T | ≤ 3 all nonempty

cells are unbounded.

Theorem 7. Let T be a finite subset of Rn. If

|T | < 2
√
n+ 1, (1)

then for any S ⊂ T the cell VT (S) is unbounded.

Proposition 8. Let S ⊂ T ⊂ Rn, with |S| = 3 and |T | = 4. Then

VT (S) is either empty or unbounded.

Proposition 9. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. Then

VT (S) is bounded iff (s1, s2) ∩ (t1, t2) 6= ∅.



Nonempty interior

Theorem 10. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . Then intVT (S) 6= ∅ iff

0n+1 /∈ conv

{(
t− s

‖t‖2 − ‖s‖2

)
, s ∈ S, t ∈ T \ S

}
.

Example 11. T = {(0,0) , (1,1) , (1,0) , (0,1)}, S = {(0,0) , (1,1)}.



Decompositions

Proposition 12. Let T be a finite subset of Rn, and let S be a

nonempty proper subset of T . If |S| ≥ 2, then

VT (S) =
⋃
s∈S

[
VT\{s}(S \ {s}) ∩ VS(s)

]
. (2)

Proposition 13. Let T be a finite subset of Rn, and let S be

a nonempty proper subset of T . If there exist s1, s2 ∈ S and

t1, t2 ∈ T \ S such that the inequalities

‖s1 − x‖ ≤ ‖t1 − x‖ and ‖s2 − x‖ ≤ ‖t2 − x‖ (3)

define the same halfspace, then these inequalities are nonessen-

tial for VT (S), i.e. they can be dropped from the system (1).



Decompositions

Theorem 14. Let T ⊂ Rn be a finite set, let S := {s1, s2} ⊂ T

be a two-point set, and let

H := {x ∈ Rn : ‖x− s1‖ = ‖x− s2‖}

= {x ∈ Rn : 〈s1 − s2, x〉 =
1

2
(‖s1‖2 − ‖s2‖2)}.

If intVT (S) 6= ∅, then H ∩ riF = ∅ for every facet F of VT (S).



An example



An example



Case study in the plane: 2 ≤ |S| < |T | ≤ 4

Proposition 15. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. The

following statements are equivalent:

a) VT (S) is nonempty and at most one-dimensional.

b) The points of T are the vertices of a cyclic quadrilateral, with

the sites of S located opposite to each other (across a diagonal).

c) VT (S) is a singleton.

Note that for the case |S| = 2 and |T | = 3 it is impossible to

have a nonempty bounded cell due to Theorem 6: the conic hull

of two vectors is always a proper subset of R2. This means that

we do not need to consider this configuration when discussing

the subsequent cases of bounded polygons.

Furthermore, in the case |S| = 3 and |T | = 4 it is impossible to

have a bounded cell, as was shown in Proposition 8.



One-dimensional cells

Since we have determined that we can not have a nonempty

bounded cell for |T | = |S| + 1, the only possibility to have a

singleton cell is for |S| = 2 and |T | = 4. Furthermore, we can

focus on the latter case when studying other bounded cells.

It follows from the preceding discussion that it is impossible to

obtain line segments as multipoint Voronoi cells in our setting.

Corollary 16. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. Then

VT (S) is not one-dimensional.

It follows from Corollary 16 that it is impossible to have a one-

dimensional cell for |T | = 4, |S| = 2, so both rays and lines are

impossible in this configuration.

Proposition 17. Let S ⊂ T ⊂ Rn, with |T | = |S|+ 1. Then VT (S)

is not one-dimensional.



Triangles

A two-point cell cannot be a triangle. We only need to prove

this for the case |S| = 2 and |T | = 4.

Proposition 18. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. Then

VT (S) is not a triangle.



Bounded quadrilaterals

Proposition 19. Let F ⊂ R2 be a non-cyclic bounded quadrilat-

eral. Then there exist S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4,

such that VT (S) = F .

https://ggbm.at/tj5k8djc


Bounded quadrilaterals

Proposition 20. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. Then

VT (S) is not a cyclic quadrilateral.



Halfspaces

Proposition 21. Let F ⊂ Rn be a halfspace. Then for any two

integers τ > σ ≥ 1 there exist S ⊂ T ⊂ Rn, with |S| = σ and

|T | = τ , such that VT (S) = F .



Intersections of parallel halfspaces

Proposition 22. Let F ⊂ Rn be a nonempty intersection of two

parallel halfspaces with opposite normals. Then there exist S ⊂
T ⊂ Rn, with |S| = 2 and |T | = 4, such that VT (S) = F .



Wedges

If V is the intersection of two non-parallel halfplanes,

V = {x ∈ R2 | 〈x, v1〉 ≤ 〈a, v1〉, 〈x, v1〉 ≤ 〈a, v2〉},

where v1, v2, a ∈ R2, and {v1, v2} is a linearly independent system,

we can choose any point t in the set

V ′ = {x ∈ R2 | 〈x, v1〉 > 〈a, v1〉, 〈x, v1〉 > 〈a, v2〉},

and let s1 and s2 be the two reflections of t with respect to the

lines 〈x, vi〉 = 〈a, vi〉, i = 1,2.



Wedges

Proposition 23. Let

F := {x ∈ Rn | 〈x, vi〉 ≤ bi (i = 1,2)} ,

with v1,v2 ∈ Rn linearly independent unit vectors and b1, b2 ∈ R.
Then there exist S ⊂ T ⊂ Rn, with |S| = 2 and |T | = 4, such that

VT (S) = F .



Unbounded polygons with three sides

Proposition 24. Let F be an unbounded polygon with three

(non-parallel) sides. Then there exist S ⊂ T ⊂ R2, with |S| = 2

and |T | = 4, such that VT (S) = F .

Proposition 25. Let S ⊂ T ⊂ R2, with |S| = 2 and |T | = 4. Then

VT (S) is not an unbounded polygon with parallel sides and just

two vertices.

https://ggbm.at/va3appd2


Unbounded polygons with three sides

We note here that it is possible to have an unbounded polygon

with three sides for the case |S| = 3 and |T | = 4 if and only if

the unbounded sides are non-parallel. Indeed, in this case we can

first build a wedge that defines the two unbounded sides, and

then add an extra site to define the extra inequality. For the case

of unbounded parallel sides, it is clear that the point t should at

the same time lie outside of each of these parallel sides, which

is impossible.



Unbounded quadrilateral #1

Proposition 26. Let F be an unbounded quadrilateral with two

parallel sides. Then there exist S ⊂ T ⊂ R2, with |S| = 2 and

|T | = 4, such that VT (S) = F .

https://ggbm.at/x9wcwdqa


Unbounded quadrilateral #2

Proposition 27. Let F be an unbounded quadrilateral with no
sides parallel. Then there exist S ⊂ T ⊂ R2, with |S| = 2 and
|T | = 4, such that VT (S) = F .

https://ggbm.at/frz6b2rq
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