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The problem

Consider a family of functions Γ ⊂ C(R). We want to approximate a
continuous function f by a function g ∈ Γ over an interval [a, b]. We
use uniform norm ‖f − g‖∞ = supt∈[a,b] |f (t)− g(t)|.

Today we are interested in approximating f using a continuous
piecewise polynomial.



Other families of functions

For some families of functions (polynomials, trigonometric
polynomials), the problem is largely solved. Approaches include:

I Algebraic

I Analytic

I Geometric

All approaches rely on the fundamental theorem of algebra, and
characterisations are given in terms of alternating sequences.



Piecewise polynomials

s is a piecewise polynomial (spline) over the interval [a, b], then
there exists knots a = ξ0 ≤ ξ1 ≤ . . . ≤ ξm ≤ ξm+1 = b and
polynomials p0, . . . , pm such that s(t) = pi(t) for any t ∈ [ξi, ξi+1]
and any i = 0, . . . ,m. The degree n of s is the maximum degree
amongst the polynomials p0, . . . , pm.

We assume that a bound on the degree n and the number of pieces
m+ 1 are known, but not the location of the knots.

The fundamental theorem of algebra doesn’t apply.



Background

p1

p2

p3

ξ1 ξ2
[ ]
a=ξ0 bξN=

Knots



Notations and formulation

Denote by T = [a, b]m the set of possible locations ofm knots in
[a, b] andΠn the set of polynomials of degree at most n.

Γ = {s ∈ C([a, b]) : ∃(ξ1 ≤ . . . ≤ ξm) ∈ T,
p0, . . . , pm ∈ Πn, s � [ξi, ξi+1] = pi, i = 0, . . . ,m}

minimise ‖f − s‖∞ subject to s ∈ Γ



Existing results

I Existence (Schumaker 1968)

I Local optimality conditions (Nürnberger, Schumaker, Sommer
and Strauss 1989; Sukhorukova and JU 2017)

I Sufficent global conditions (Nürnberger 1989)



Fixed knots formulation

First suppose that the knots ξ1, . . . , xm are known. T

minimise u subject to

u−
n∑

i=0

ai,jti ≥ f (t) ∀t ∈ [ξi, ξi+1], j = 0, . . . ,m

u+

n∑
i=0

ai,jti ≥ −f (t) ∀t ∈ [ξi, ξi+1], j = 0, . . . ,m

n∑
i=0

ai,jξij −
n∑

i=0

ai,j−1ξ
i
j = 0 j = 0, . . . ,m

(PΞ)



Dual Formulation

maximise
∑

t∈[a,b]

(y+t − y−t )f (t) subject to (DΞ)∑
t∈[a,b]

(y+t + y−t ) = 1

∑
t∈[ξj,ξj+1]

(y+t − y−t )t
i − zjξij + zj−1ξ

i
j−1 = 0 j = 1, . . . , n− 1

∑
t∈[ξn,ξn+1]

(y+t − y−t )t
i + zjξin = 0

∑
t∈[ξ0,ξ1]

(y+t − y−t )t
i − zjξi1 = 0

y+t ≥ 0, y−t ≥ 0 t ∈ [a, b]

(CΞ)

and a finite number of yt are positive.



Premilinary results

Any feasible solution to the dual is given by a nontrivial solution to
the systemWx = 0, forW of the form: Thematrix

W =


V1 0 ............ 0

0 V2 0 ........ 0

0 0 V3 0 · · · 0

. . . . . . . . . . . . . . . . . . . . .

0 ......... 0 Vn


The blocks Vi are Vandermonde-like.



Remark

minimise
∑

t∈[a,b]

(y+t − y−t )f (t) subject to∑
t∈[a,b]

(y+t + y−t ) = 1

∑
t∈[ξj,ξj+1]

(y+t − y−t )t
i − zjξij + zj−1ξ

i
j−1 = 0 j = 1, . . . , n− 1

∑
t∈[ξn,ξn+1]

(y+t − y−t )t
i + zjξin = 0

∑
t∈[ξ0,ξ1]

(y+t − y−t )t
i − zjξi1 = 0

y+t ≥ 0, y−t ≥ 0 t ∈ [a, b]

and a finite number of yt are positive.



Remark

maximise −
∑

t∈[a,b]

(y+t − y−t )f (t) subject to∑
t∈[a,b]

(y+t + y−t ) = 1

∑
t∈[ξj,ξj+1]

(y+t − y−t )t
i − zjξij + zj−1ξ

i
j−1 = 0 j = 1, . . . , n− 1

∑
t∈[ξn,ξn+1]

(y+t − y−t )t
i + zjξin = 0

∑
t∈[ξ0,ξ1]

(y+t − y−t )t
i − zjξi1 = 0

y+t ≥ 0, y−t ≥ 0 t ∈ [a, b]

and a finite number of yt are positive.



Remark

maximise
∑

t∈[a,b]

(y+t − y−t )(−f (t)) subject to

∑
t∈[a,b]

(y+t + y−t ) = 1

∑
t∈[ξj,ξj+1]

(y+t − y−t )t
i − zjξij + zj−1ξ

i
j−1 = 0 j = 1, . . . , n− 1

∑
t∈[ξn,ξn+1]

(y+t − y−t )t
i + zjξin = 0

∑
t∈[ξ0,ξ1]

(y+t − y−t )t
i − zjξi1 = 0

y+t ≥ 0, y−t ≥ 0 t ∈ [a, b]

and a finite number of yt are positive.



Remark

I the dual problem (DΞ)-(CΞ) is symmetric: if themaximum is u∗Ξ,
then the minimum is−u∗Ξ.

I There is a feasible solution taking any value [−u∗Ξ, u
∗
Ξ],



Comparing with the solution

Let

u∗ = min
s∈Γ

‖f − s‖∞

u∗ = ‖f − s∗‖∞

Ξ∗ = (ξ∗1 , . . . , ξ
∗
m) the knots of s∗ and (y∗, z∗) the optimal dual

variable of (DΞ).

Then u∗ ∈ [−u∗Ξ, u
∗
Ξ].



An upper bound

u∗ ∈ [−u∗Ξ, u
∗
Ξ] =⇒ ∃uΞ ∈ [−u∗Ξ, u

∗
Ξ], u

∗ ≤ uΞ∀Ξ ∈ T

We can estimate u∗ from above by solving the problem:

maximise u subject to u ∈ [−u∗Ξ, u
∗
Ξ]



A upper bound
We can estimate u∗ from above by solving the problem:

maximise u subject to (D)∑
t∈[a,b]

(y+t,Ξ − y it,Ξ)f (t)− u = 0 Ξ ∈ T

∑
t∈[a,b]

(y+t,Ξ + y−t,Ξ) = 1 Ξ ∈ T

∑
t∈[ξj,ξj+1]

(y+t,Ξ − y−t,Ξ)t
i − zj,Ξξij + z,Ξj−1ξ

i
j−1 = 0 j = 1, . . . , n− 1,Ξ ∈ T

∑
t∈[ξn,ξn+1]

(y+t,Ξ − y−t,Ξ)t
i + zj,Ξξin = 0 Ξ ∈ T

∑
t∈[ξ0,ξ1]

(y+t,Ξ − y−t,Ξ)t
i − zj,Ξξi1 = 0 Ξ ∈ T

y+t,Ξ ≥ 0, y−t,Ξ ≥ 0 t ∈ [a, b],Ξ ∈ T

(C)

and a finite number of yt,Ξ are positive for eachΞ. (1)
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Dual IDLP

The dual problem of (D) is

minimise u subject to

u−
n∑

i=0

ai,j,Ξti − wΞf (t) ≥ 0 ∀t ∈ [ξi, ξi+1], i = 0, . . . ,m,Ξ ∈ T

u+

n∑
i=0

ai,j,Ξti + wΞf (t) ≥ 0 ∀t ∈ [ξi, ξi+1], i = 0, . . . ,m

n∑
i=0

ai,j,Ξξij −
n∑

i=0

ai,j,Ξ−1ξ
i
j = 0 i = 0, . . . ,m∑

Ξ∈T

wΞ = 1

(P)



IDLP

I Weak duality holds: if uD and u¶ are feasible solutions to (D)
and (P), then uD ≤ uP.

I A duality gapmay exist



Binary formulation

u∗ is the solution to the following problem:

minimise u subject to

u−
n∑

i=0

ai,j,Ξti − wΞf (t) ≥ 0 ∀t ∈ [ξi, ξi+1], i = 0, . . . ,m,Ξ ∈ T

u+

n∑
i=0

ai,j,Ξti + wΞf (t) ≥ 0 ∀t ∈ [ξi, ξi+1], i = 0, . . . ,m

n∑
i=0

ai,j,Ξξij −
n∑

i=0

ai,j,Ξ−1ξ
i
j = 0 i = 0, . . . ,m∑

Ξ∈T

wΞ = 1

wΞ ∈ {0, 1} Ξ ∈ T

(IP)



No Duality Gap

Proposition
Let u∗D, u

∗
P and u∗I be the respective solutions of (D), (P) and (IP). Then

u∗I = u∗ ≤ u∗D ≤ u∗P ≤ u∗I



Bisection algorithm

1. Select a set of knotsΞ ∈ T and find the solution uΞ to the
problem (PΞ). Let u+ = uΞ and u− = 0.

2. Set

uk =
u+k + u−k

2

and solve the system (C).

3. I If the system is feasible, then this provides a feasible solution to
the Problem (DΞ)-(CΞ), and uk is a lower bound to the best
approximation. Set u+k+1 = u+k and u−k+1 = uk . Set k = k + 1
and go to Step 2.

I Otherwise there is no feasible solution for the value uk , and it
provides an upper bound to the best approximation. Set
u+k+1 = uk and u−k+1 = u−k . Set k = k + 1 and go to Step 2.
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