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Motivation

Application of optimization =⇒ convergence analysis.

Two key ingredients:

1 Regularity of individual functions/sets.

2 Regularity of families of functions/sets.

Analyze convergence ⇐⇒ verify regularity properties.

New characterizations of regularity =⇒ better understanding
of convergence.
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Research questions

Let (xk) be generated by xk+1 ∈ Txk , where T : E⇒ E.

Goal: xk → x̃ ∈ Fix T with linear rate c ∈ (0, 1),

‖xk − x̃‖ ≤ γck ∀k ∈ N.

Research questions:
1 sufficient conditions?

T averaged + (I − Id) metrically subregular⇒ linear convergence.

2 necessary conditions?

linear convergence ⇒ (I − Id) metrically subregular.

3 application to projection algorithms?
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Linear convergence with Fejér monotonicity

Theorem (Bauschke-Combettes 2011)

Suppose that (xk) is Fejér monotone w.r.t. S (convex),

‖xk+1 − x‖ ≤ ‖xk − x‖ ∀x ∈ S , ∀k ∈ N,

and linearly monotone w.r.t. S with rate c ∈ [0, 1),

dist(xk+1,S) ≤ c dist(xk ,S) ∀k ∈ N.

Then (xk) converges linearly to some x̃ ∈ S with rate c.

Example of AP for a line intersecting a circle requires broader
approach to linear convergence in nonconvex setting (next slide).
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Why almost averaging operators?
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fixed-point

AP
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fixed-points

Figure: Convex vs nonconvex AP

Left: convexity, Fejér monotonicity, averagedness.

Right: none of those, though convergence!

=⇒ theory of almost averaging operators.
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Pointwise almost averaged maps

Definition

T : E⇒ E is pointwise almost averaged (p.a.a.) on U at y ∈ U
with violation ε and averaging constant α if∥∥x+ − y+

∥∥2 ≤ (1 + ε) ‖x − y‖2 − 1− α
α

∥∥(x+ − x)− (y+ − y)
∥∥2
,

for all x ∈ U, x+ ∈ Tx and y+ ∈ Ty .
If the property holds for all y ∈ U, we say almost averaged on U.

For α = 1 and α = 1/2, one can talk about almost nonexpansive
and almost firmly nonexpansive, respectively.
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A criterion for linear convergence

Recall: a mapping F : X⇒ Y is metrically subregular at x̄ for
ȳ ∈ F (x̄) with constant κ ≥ 0 if

dist
(
x ,F−1(ȳ)

)
≤ κ dist (ȳ ,F (x)) ∀x near x̄ .

Theorem

Let T : E⇒ E with Fix T closed and nonempty. Suppose

1 T is pointwise almost averaged on Fix T + δB at all
y ∈ Fix T with violation ε and averaging constant α,

2 the mapping F := T − Id is metrically subregular at every

point x ∈ Fix T for 0 with constant κ <
√

1−α
εα .

Then the iteration xk+1 ∈ T (xk) with x0 close to Fix T converges

linearly to a fixed point of T with rate c ≤
√

1 + ε− 1−α
ακ2 < 1.
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A criterion for linear convergence

A
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x

Tx

d

stepsize

Theorem

1 T is pointwise almost averaging.

2 T − Id is metrically subregular: d ≤ γ stepsize.

=⇒ dist (Tx ,Fix T ) ≤ c dist (x ,Fix T ) .
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A way to linear convergence (for necessary conditions)

Let T : E⇒ E with Fix T closed and nonempty.

Proposition

Suppose that T is pointwise almost averaged on (Fix T + d0B) at
all point y ∈ Fix T, where d0 := dist(x0,Fix T ), and xk+1 ∈ Txk is
linearly monotone w.r.t. Fix T with rate c ∈ [0, 1). Then (xk)
converges linearly to a fixed point of T with rate c.

Recall: (xk) is linearly monotone w.r.t. Fix T with rate c ∈ [0, 1) if

dist(xk+1,Fix T ) ≤ c dist(xk ,Fix T ) ∀k ∈ N.
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Metric subregularity is necessary for linear monotonicity

Let T : E⇒ E with Fix T closed and nonempty.

Theorem

If for all x0 close to Fix T, all iteration xk+1 ∈ Txk is linearly
monotone with respect to Fix T with rate c ∈ (0, 1), then the
mapping F := T − Id is metrically subregular at every fixed point
of T for 0 with constant κ ≤ 1

1−c .

Corollary

Under the assumption of pointwise almost averagedness on T ,

linear monotonicity ⇐⇒ metric subregularity.
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Metric subregularity vs subtransversality (general)

Metric subregularity of F at (x̄ , ȳ)

dist
(
x ,F−1(ȳ)

)
≤ κ dist (ȳ ,F (x)) ∀x near x̄ .

{A,B} is subtransversal at x̄ ∈ A ∩ B with constant κ if

dist (x ,A ∩ B) ≤ κmax {dist (x ,A) , dist(x ,B)} ∀x near x̄ .

1 Given {A,B}, construct F (x) = (A− x)× (B − x).

2 Given {A,B}, construct F (x , y) = {x − y} if (x , y) ∈ A× B and
F (x , y) = ∅ otherwise.

3 Given F and (x̄ , ȳ) ∈ gphF , construct A = gphF and B = X ×{ȳ}.

Fact

Metric subregularity of F ⇐⇒ subtransversality of {A,B}.
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Metric subregularity vs subtransversality (for AP)

Metric subregularity of F at (x̄ , ȳ)

dist
(
x ,F−1(ȳ)

)
≤ κ dist (ȳ ,F (x)) ∀x near x̄ .

{A,B} is subtransversal at x̄ ∈ A ∩ B with constant κ if

dist (x ,A ∩ B) ≤ κmax {dist (x ,A) , dist(x ,B)} ∀x near x̄ .

Fact

Metric subregularity of PAPB − Id ⇐⇒ subtransversality of {A,B}.
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Convexity-like properties yield almost everagedness

Convexity of A and B yields averagedness of PAPB .

Convexity-like properties of A and B yield (pointwise) almost
averagedness of PAPB .
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Convex alternating projections

Theorem ( Subtransversality ⇐⇒ linear convergence)

(Bauschke-Borwein 1996) If {A,B} is subtransversal at
x̄ ∈ A ∩ B with constant κ > 0, then any AP iteration (xk)
with x0 close to x̄ is converges linearly to a point in A ∩ B
with rate c ≤ 1− 1/κ2.

If for any x0 close to x̄, the AP iteration converges linearly to
some point in A ∩ B with rate c ∈ [0, 1), then {A,B} is
subtransversal at x̄ with constant κ ≤ 3−c

1−c .

There is the global version of this result.

linear monotonicity ⇔ linear convergence ⇔ subtransversality.
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How were necessary conditions results obtained?

Theorem (ideas for necessary conditions)

(Drusvyatskiy-Ioffe-Lewis 2015, Theorem 6.2) The property
called intrinsic transversality implies subtransversality.

A finer characterization of subtransversality is presented:
{A,B} is subtransversal at x̄ with constant κ if

dist (x ,A ∩ B) ≤ κ dist(x ,B) ∀x ∈ A near x̄ .
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How about nonconvex alternating projections?

A

B

fixed-point

x

x
+

Figure: Convex and consistent AP.

1 Subtransversality is not sufficient.

2 Sufficient conditions: two approaches =⇒ a unified criterion.

3 Necessary conditions =⇒ conjecture on subtransversality.
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Sufficient conditions

A

B
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x
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+

Two approaches:

1 P.a.a. and subtransversality (Hesse-Luke 2013).

2 Make use of transversality properties (Lewis, Luke, Malick,
Bauschke, Phan, Wang, Drusvyatskiy, Ioffe, Lewis, Noll,
Rondepierre). The finest criterion is established in
Noll-Rondepierre 2015.

Nguyen Hieu Thao
On linear convergence of fixed-point iterations and application to phase retrieval



Introduction
Convergence of fixed-point iterations

Alternating projections (AP)
Application to phase retrieval problem

A unified criterion

Two approaches:

1 P.a.a. and subtransversality (Hesse-Luke 2013) =⇒ linear
monotonicity =⇒ linear convergence.

2 Make use of transversality properties (Noll-Rondepierre 2015)
=⇒ linear extendibility =⇒ linear convergence.

=⇒ a unified criterion:

{
convexity-like property of one set

metric subregularity of PAPB − Id .
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Linear monotonicity =⇒ subtransversality

(xk) is linearly monotone w.r.t. A ∩ B with rate c if

dist(xk+1,A ∩ B) ≤ c dist(xk ,A ∩ B) ∀k ∈ N.

{A,B} is subtransversal at x̄ ∈ A ∩ B with constant κ if

dist (x ,A ∩ B) ≤ κmax {dist (x ,A) , dist(x ,B)} ∀x near x̄ .

Theorem

Suppose that, for any x0 close to x̄, every AP iteration (xk) is
linearly monotone w.r.t. A ∩ B at rate c ∈ [0, 1). Then {A,B} is
subtransversal at x̄ with constant κ ≤ 5−c

1−c .
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Linear extendability

Let (zk) be the joining sequence of AP iteration xk+1 ∈ PAPBxk ,

z2k = xk and z2k+1 = bk ,

where bk ∈ PBxk such that xk+1 ∈ PAbk for all k ∈ N.

Definition

(xk) is linearly extendable with rate c ∈ [0, 1) if ∀k = 1, 2, . . .,

‖zk+1 − zk‖ ≤ ‖zk − zk−1‖,
‖z2k+2 − z2k+1‖ ≤ c‖z2k+1 − z2k‖.

Fact

Linear extendability =⇒ linear convergence.
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Linear extendability =⇒ subtransversality

(xk) is linearly extendable with rate c if ∀k = 1, 2, . . .,

‖zk+1 − zk‖ ≤ ‖zk − zk−1‖,
‖z2k+2 − z2k+1‖ ≤ c‖z2k+1 − z2k‖.

{A,B} is subtransversal at x̄ ∈ A ∩ B with constant κ if

dist (x ,A ∩ B) ≤ κmax {dist (x ,A) , dist(x ,B)} ∀x near x̄ .

Theorem

Suppose that, for all x0 close to x̄, every AP iteration (xk) is
linearly extendable with rate c ∈ [0, 1). Then {A,B} is
subtransversal at x̄ with constant κ ≤ 5−c

1−c .
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Is subtransversality necessary for linear convergence?

All known criteria for linear convergence of AP follow:

linear monotonicity/linear extendability =⇒ linear
convergence.

Linear monotonicity/linear extendability =⇒ subtransversality.

Observation: subtransversality has appeared in all known criteria.

Conjecture

Subtransversality is necessary for linear convergence of AP.

Nguyen Hieu Thao
On linear convergence of fixed-point iterations and application to phase retrieval



Introduction
Convergence of fixed-point iterations

Alternating projections (AP)
Application to phase retrieval problem

Image formulation - the Fraunhofer diffraction model

pupil plane
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object plane image plane

Ik ∝ |F ◦ Dk(a. exp(jΦ))|2 ∝ |F (a. exp(j(Φ + ψk)))|2 .

Nguyen Hieu Thao
On linear convergence of fixed-point iterations and application to phase retrieval



Introduction
Convergence of fixed-point iterations

Alternating projections (AP)
Application to phase retrieval problem

Phase retrieval problem

Write x̂ = a. exp(jΦ) and define the propagation matrix:

M =
1√
m


FD1

FD2

· · ·
FDm

 .

Phase retrieval is to solve:

|Mx |2 = I + w , x ∈ Cn,

where I = (IT1 , I
T
2 , · · · , ITm )T and w ∈ RN represents noise.

Nguyen Hieu Thao
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Feasibility models

Define

Ωk :=
{
x ∈ Cn : |FDk(x)|2 = Ik

}
(1 ≤ k ≤ m).

A feasibility model is:

find x ∈
m⋂

k=0

Ωk , (1)

where Ω0 := χ captures a priori constraint of the solutions.

Nguyen Hieu Thao
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Feasibility models (cont.)

Define

Ω := Ω1 × Ω2 × · · · × Ωm, D := {(x , x , . . . , x) ∈ Cnm | x ∈ χ} .

A feasibility model in the Cartesian product space is:

find u ∈ Ω ∩ D. (2)

The counterpart of (2) in the Fourier domain is:

find y ∈ A ∩ B, (3)

where
A := M(χ) and B := {y ∈ CN | |y |2 = I}.

Proposition

Let x̂ ∈ Cn and ŷ = Mx̂. Then

x̂ solves (1) ⇔ [x̂ ]m solves (2) ⇔ ŷ solves (3).

Nguyen Hieu Thao
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Calculation of projectors

Recall the feasibility model:

find y ∈ A ∩ B,

where
A := M(χ) and B := {y ∈ CN | |y |2 = I}.

Two projectors:

PA - dependent on Pχ: PA(y) = MPχ (M∗y).

PB - rescale elementwise: PB(y) = b � y
|y | .

Nguyen Hieu Thao
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About convergence?

1 The sets are prox-regular ⇐= almost averagedness.

2 Randomly chosen phase diversity patterns (the only chosen
input) lead to subtransversality almost surely.

As a result, linear convergence is almost surely.
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Thank you for your attention!
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