On linear convergence of fixed-point iterations and application to phase retrieval

Nguyen Hieu Thao

Delft Center for Systems and Control, TU Delft, The Netherlands

WoMBaT 2018, Deakin University, Melbourne, Australia

- 2 Convergence of fixed-point iterations
- 3 Alternating projections (AP)
- Application to phase retrieval problem

Motivation

- Application of optimization \implies convergence analysis.
- Two key ingredients:
 - Regularity of individual functions/sets.
 - 2 Regularity of families of functions/sets.
- Analyze convergence \iff verify regularity properties.
- New characterizations of regularity => better understanding of convergence.

Research questions

- Let (x_k) be generated by $x_{k+1} \in Tx_k$, where $T : \mathbb{E} \rightrightarrows \mathbb{E}$.
- Goal: $x_k \to \tilde{x} \in \text{Fix } T$ with linear rate $c \in (0, 1)$,

$$\|x_k - \tilde{x}\| \leq \gamma c^k \quad \forall k \in \mathbb{N}.$$

- Research questions:
 - sufficient conditions?
 - T averaged + (I Id) metrically subregular \Rightarrow linear convergence.

```
2 necessary conditions?
```

```
linear convergence \Rightarrow (I - Id) metrically subregular.
```


application to projection algorithms?

Nguven Hieu Thao

Linear convergence with Fejér monotonicity

Theorem (Bauschke-Combettes 2011)

Suppose that (x_k) is Fejér monotone w.r.t. S (convex),

$$\|x_{k+1}-x\| \leq \|x_k-x\| \quad \forall x \in S, \ \forall k \in \mathbb{N},$$

and linearly monotone w.r.t. S with rate $c \in [0, 1)$,

$$\operatorname{dist}(x_{k+1},S) \leq c \operatorname{dist}(x_k,S) \quad \forall k \in \mathbb{N}.$$

Then (x_k) converges linearly to some $\tilde{x} \in S$ with rate c.

Example of AP for a line intersecting a circle requires broader approach to linear convergence in nonconvex setting (next slide).

Why almost averaging operators?

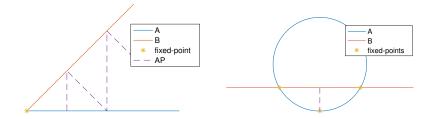


Figure: Convex vs nonconvex AP

- Left: convexity, Fejér monotonicity, averagedness.
- Right: none of those, though convergence!
 - \implies theory of almost averaging operators.

Nguyen Hieu Thao

Pointwise almost averaged maps

Definition

 $T : \mathbb{E} \Rightarrow \mathbb{E}$ is pointwise almost averaged (p.a.a.) on U at $y \in U$ with violation ε and averaging constant α if

$$||x^{+} - y^{+}||^{2} \le (1 + \varepsilon) ||x - y||^{2} - \frac{1 - \alpha}{\alpha} ||(x^{+} - x) - (y^{+} - y)||^{2},$$

for all $x \in U$, $x^+ \in Tx$ and $y^+ \in Ty$. If the property holds for all $y \in U$, we say almost averaged on U.

For $\alpha = 1$ and $\alpha = 1/2$, one can talk about almost nonexpansive and almost firmly nonexpansive, respectively.

A criterion for linear convergence

Recall: a mapping $F : \mathbb{X} \rightrightarrows \mathbb{Y}$ is *metrically subregular* at \bar{x} for $\bar{y} \in F(\bar{x})$ with constant $\kappa \geq 0$ if

$${\sf dist}\left(x,{\mathcal F}^{-1}(ar y)
ight)\leq\kappa\,{\sf dist}\left(ar y,{\mathcal F}(x)
ight)\quadorall x\,\,{\sf near}\,\,ar x.$$

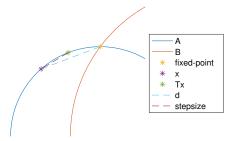
Theorem

Let $T : \mathbb{E} \rightrightarrows \mathbb{E}$ with Fix T closed and nonempty. Suppose

- T is pointwise almost averaged on Fix T + δB at all y ∈ Fix T with violation ε and averaging constant α,
- the mapping F := T Id is metrically subregular at every point $x \in \text{Fix } T$ for 0 with constant $\kappa < \sqrt{\frac{1-\alpha}{\epsilon\alpha}}$.

Then the iteration $x_{k+1} \in T(x_k)$ with x_0 close to Fix T converges linearly to a fixed point of T with rate $c \leq \sqrt{1 + \varepsilon - \frac{1-\alpha}{\alpha\kappa^2}} < 1$.

A criterion for linear convergence



Theorem

- **1** T is pointwise almost averaging.
- **2** $T \text{Id } is metrically subregular: <math>d \leq \gamma$ stepsize.

$$\implies$$
 dist $(Tx, Fix T) \leq c \operatorname{dist}(x, Fix T)$.

A way to linear convergence (for necessary conditions)

Let $T : \mathbb{E} \rightrightarrows \mathbb{E}$ with Fix T closed and nonempty.

Proposition

Suppose that T is pointwise almost averaged on (Fix $T + d_0\mathbb{B}$) at all point $y \in \text{Fix } T$, where $d_0 := \text{dist}(x_0, \text{Fix } T)$, and $x_{k+1} \in Tx_k$ is linearly monotone w.r.t. Fix T with rate $c \in [0, 1)$. Then (x_k) converges linearly to a fixed point of T with rate c.

Recall: (x_k) is linearly monotone w.r.t. Fix T with rate $c \in [0, 1)$ if

 $\operatorname{dist}(x_{k+1},\operatorname{Fix} T) \leq c \operatorname{dist}(x_k,\operatorname{Fix} T) \quad \forall k \in \mathbb{N}.$

Metric subregularity is necessary for linear monotonicity

Let $T : \mathbb{E} \rightrightarrows \mathbb{E}$ with Fix T closed and nonempty.

Theorem

If for all x_0 close to Fix T, all iteration $x_{k+1} \in Tx_k$ is linearly monotone with respect to Fix T with rate $c \in (0,1)$, then the mapping F := T - Id is metrically subregular at every fixed point of T for 0 with constant $\kappa \leq \frac{1}{1-c}$.

Corollary

Under the assumption of pointwise almost averagedness on T,

linear monotonicity \iff *metric subregularity*.

Metric subregularity vs subtransversality (general)

• Metric subregularity of F at (\bar{x}, \bar{y})

 $\operatorname{dist} (x, F^{-1}(\bar{y})) \leq \kappa \operatorname{dist} (\bar{y}, F(x)) \quad \forall x \text{ near } \bar{x}.$

• $\{A, B\}$ is *subtransversal* at $\bar{x} \in A \cap B$ with constant κ if

 $dist(x, A \cap B) \le \kappa \max \{ dist(x, A), dist(x, B) \} \quad \forall x \text{ near } \bar{x}.$

- Given $\{A, B\}$, construct $F(x) = (A x) \times (B x)$.
- ② Given {*A*, *B*}, construct $F(x, y) = \{x y\}$ if $(x, y) \in A \times B$ and $F(x, y) = \emptyset$ otherwise.
- **3** Given F and $(\bar{x}, \bar{y}) \in \operatorname{gph} F$, construct $A = \operatorname{gph} F$ and $B = X \times \{\bar{y}\}$.

Fact

Metric subregularity of $F \iff$ subtransversality of $\{A, B\}$.

Metric subregularity vs subtransversality (for AP)

• Metric subregularity of F at (\bar{x}, \bar{y})

 $dist(x, F^{-1}(\bar{y})) \le \kappa dist(\bar{y}, F(x)) \quad \forall x \text{ near } \bar{x}.$

• $\{A, B\}$ is *subtransversal* at $\bar{x} \in A \cap B$ with constant κ if

 $dist(x, A \cap B) \le \kappa \max \{ dist(x, A), dist(x, B) \} \quad \forall x \text{ near } \bar{x}.$

Fact

Metric subregularity of $P_A P_B - Id \iff$ subtransversality of $\{A, B\}$.

Convexity-like properties yield almost everagedness

- Convexity of A and B yields averagedness of $P_A P_B$.
- Convexity-like properties of A and B yield (pointwise) almost averagedness of $P_A P_B$.

Convex alternating projections

Theorem (Subtransversality \iff linear convergence)

- (Bauschke-Borwein 1996) If $\{A, B\}$ is subtransversal at $\bar{x} \in A \cap B$ with constant $\kappa > 0$, then any AP iteration (x_k) with x_0 close to \bar{x} is converges linearly to a point in $A \cap B$ with rate $c \leq 1 1/\kappa^2$.
- If for any x₀ close to x̄, the AP iteration converges linearly to some point in A ∩ B with rate c ∈ [0, 1), then {A, B} is subtransversal at x̄ with constant κ ≤ 3-c/1-c.
- There is the global version of this result.
- linear monotonicity \Leftrightarrow linear convergence \Leftrightarrow subtransversality.

How were necessary conditions results obtained?

Theorem (ideas for necessary conditions)

- (Drusvyatskiy-loffe-Lewis 2015, Theorem 6.2) The property called intrinsic transversality implies subtransversality.
- A finer characterization of subtransversality is presented:
 {A, B} is subtransversal at x̄ with constant κ if

 $dist(x, A \cap B) \leq \kappa dist(x, B) \quad \forall x \in A \text{ near } \bar{x}.$

How about nonconvex alternating projections?

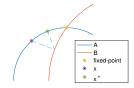
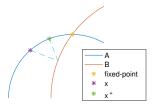


Figure: Convex and consistent AP.

- Subtransversality is not sufficient.
- **2** Sufficient conditions: two approaches \implies a unified criterion.

Sufficient conditions



Two approaches:

P.a.a. and subtransversality (Hesse-Luke 2013).

Make use of transversality properties (Lewis, Luke, Malick, Bauschke, Phan, Wang, Drusvyatskiy, Ioffe, Lewis, Noll, Rondepierre). The finest criterion is established in Noll-Rondepierre 2015.

A unified criterion

Two approaches:

- **1** P.a.a. and subtransversality (Hesse-Luke 2013) \implies linear monotonicity \implies linear convergence.
- Make use of transversality properties (Noll-Rondepierre 2015) \implies linear extendibility \implies linear convergence.

 \implies a unified criterion: $\begin{cases} \text{convexity-like property of one set} \\ \text{metric subregularity of } P_A P_B - \text{Id}. \end{cases}$

Linear monotonicity \implies subtransversality

• (x_k) is linearly monotone w.r.t. $A \cap B$ with rate c if

 $\operatorname{dist}(x_{k+1}, A \cap B) \leq c \operatorname{dist}(x_k, A \cap B) \quad \forall k \in \mathbb{N}.$

• $\{A, B\}$ is *subtransversal* at $\bar{x} \in A \cap B$ with constant κ if

 $dist(x, A \cap B) \le \kappa \max \{ dist(x, A), dist(x, B) \} \quad \forall x \text{ near } \bar{x}.$

Theorem

Suppose that, for any x_0 close to \bar{x} , every AP iteration (x_k) is linearly monotone w.r.t. $A \cap B$ at rate $c \in [0, 1)$. Then $\{A, B\}$ is subtransversal at \bar{x} with constant $\kappa \leq \frac{5-c}{1-c}$.

Linear extendability

Let (z_k) be the *joining sequence* of AP iteration $x_{k+1} \in P_A P_B x_k$,

$$z_{2k} = x_k$$
 and $z_{2k+1} = b_k$,

where $b_k \in P_B x_k$ such that $x_{k+1} \in P_A b_k$ for all $k \in \mathbb{N}$.

Definition

 $\begin{array}{l} (x_k) \text{ is linearly extendable with rate } c \in [0,1) \text{ if } \forall k = 1,2,\ldots, \\ \|z_{k+1} - z_k\| \leq \|z_k - z_{k-1}\|, \\ \|z_{2k+2} - z_{2k+1}\| \leq c \|z_{2k+1} - z_{2k}\|. \end{array}$

Fact

Linear extendability \implies linear convergence.

Nguyen Hieu Thao

Linear extendability \implies subtransversality

• (x_k) is linearly extendable with rate c if $\forall k = 1, 2, ...,$ $||z_{k+1} - z_k|| \le ||z_k - z_{k-1}||,$ $||z_{2k+2} - z_{2k+1}|| \le c ||z_{2k+1} - z_{2k}||.$

• $\{A, B\}$ is *subtransversal* at $\bar{x} \in A \cap B$ with constant κ if

 $dist(x, A \cap B) \le \kappa \max \{ dist(x, A), dist(x, B) \} \quad \forall x \text{ near } \bar{x}.$

Theorem

Suppose that, for all x_0 close to \bar{x} , every AP iteration (x_k) is linearly extendable with rate $c \in [0, 1)$. Then $\{A, B\}$ is subtransversal at \bar{x} with constant $\kappa \leq \frac{5-c}{1-c}$.

Is subtransversality necessary for linear convergence?

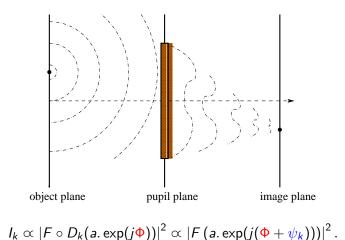
- All known criteria for linear convergence of AP follow: linear monotonicity/linear extendability ⇒ linear convergence.
- Linear monotonicity/linear extendability \implies subtransversality.

Observation: subtransversality has appeared in all known criteria.

Conjecture

Subtransversality is necessary for linear convergence of AP.

Image formulation - the Fraunhofer diffraction model



Nguyen Hieu Thao

Phase retrieval problem

Write $\hat{x} = a \exp(j\Phi)$ and define the propagation matrix:

$$M = \frac{1}{\sqrt{m}} \begin{pmatrix} FD_1 \\ FD_2 \\ \cdots \\ FD_m \end{pmatrix}.$$

Phase retrieval is to solve:

$$|Mx|^2 = I + w, \quad x \in \mathbb{C}^n,$$

where $I = (I_1^T, I_2^T, \cdots, I_m^T)^T$ and $w \in \mathbb{R}^N$ represents noise.

Feasibility models

Define

$$\Omega_k := \left\{ x \in \mathbb{C}^n : |FD_k(x)|^2 = I_k \right\} \quad (1 \le k \le m).$$

A feasibility model is:

find
$$x \in \bigcap_{k=0}^{m} \Omega_k$$
, (1)

where $\Omega_0 := \chi$ captures *a priori* constraint of the solutions.

Feasibility models (cont.)

Define

$$\Omega := \Omega_1 \times \Omega_2 \times \cdots \times \Omega_m, \ D := \{(x, x, \dots, x) \in \mathbb{C}^{nm} \mid x \in \chi\}.$$

A feasibility model in the Cartesian product space is:

find
$$u \in \Omega \cap D$$
. (2)

The counterpart of (2) in the Fourier domain is:

find
$$y \in A \cap B$$
, (3)

where

$$A := M(\chi) \text{ and } B := \{y \in \mathbb{C}^N \mid |y|^2 = I\}.$$

Proposition

Let $\hat{x} \in \mathbb{C}^n$ and $\hat{y} = M\hat{x}$. Then

 $\hat{x} \text{ solves } (1) \Leftrightarrow [\hat{x}]_m \text{ solves } (2) \Leftrightarrow \hat{y} \text{ solves } (3).$

Nguyen Hieu Thao

Calculation of projectors

Recall the feasibility model:

find $y \in A \cap B$,

where

$$A := M(\chi) \text{ and } B := \{ y \in \mathbb{C}^N \mid |y|^2 = I \}.$$

Two projectors:

- P_A dependent on P_{χ} : $P_A(y) = M P_{\chi}(M^* y)$.
- P_B rescale elementwise: $P_B(y) = b \odot \frac{y}{|y|}$.

About convergence?

- The sets are prox-regular \leftarrow almost averagedness.
- Randomly chosen phase diversity patterns (the only chosen input) lead to subtransversality almost surely.

As a result, linear convergence is almost surely.

References I

- Bauschke-Borwein. On projection algorithms for solving convex feasibility problems. *SIAM Rev.* **3**, 367–426 (1996)
- Bauschke-Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. *Springer* (2011)
- Bauschke-Luke-Phan-Wang. Restricted normal cones and the method of alternating projections: Applications. Set-Valued Var. Anal. 21, 475–501 (2013)
- Drusvyatskiy-loffe-Lewis. Transversality and alternating projections for nonconvex sets. *Found. Comput. Math.* **15**, 1637–1651 (2015)
- Hesse-Luke. Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. *SIAM J. Optim.* 23, 2397–2419 (2013)

References II

- Kruger-Luke-Th. Set regularities and feasibility problems. *Math. Program. B* **168**(1):1–33 (2018)
- Kruger-Luke-Th. About subtransversality of collections of sets. *Set-Valued Var. Anal.* **25**(4):701–729 (2017)
- Kruger-Th. Regularity of collections of sets and convergence of inexact alternating projections. *J. Convex Anal.* 23(3):823-847 (2016)
- Lewis-Luke-Malick. Local linear convergence of alternating and averaged projections. *Found. Comput. Math.* **9**, 485–513 (2009)
- Lewis-Malick. Alternating projections on manifolds. *Math. Oper. Res.* **33**, 216–234 (2008)

References III

- Luke-Burke-Lyon, Optical wavefront reconstruction: theory and numerical methods. *SIAM Rev.* **44**, 169–224 (2002)
- Luke-Th-Tam. Quantitative convergence analysis of iterated expansive set-valued mappings. *Math. Oper. Res.*, to appear.
- Noll-Rondepierre. On local convergence of the method of alternating projections. *Found. Comput. Math.* **16**, 425–455 (2016)
- Pierra. Decomposition through formalization in a product space. *Math. Programming* **28**, 96–115 (1984)
- Th. Algorithms for Structured Nonconvex Optimization: Theory and Practice. PhD Thesis, Gottingen University (2017)

Thank you for your attention!

Nguyen Hieu Thao